
*1 REPORT NO. UTUCDCS-R--88-1421 UILU-ENG-88-1726 (~
The SUE User's Manual

(SME Version 2E)

by

Brian Falkenlhainer

December 1988 1

e4J_

DEATEN FCOPTR CEC

oNVRIYO LIOSA RAN-CAPINUBNILNI



SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
3. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release;

b DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution uwilimited

. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

IUC-DCS-88-1421

. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. ?~iOF MQNIIPRIN( QRGANIZATION
Jniversity ot Illinois (If applicable) ice 0 ava Kesearcn
ept. of Computer Science Cognitive Science Division (Code 1142CS)

c. ADDRESS (C'ty, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

1304 W. Springfield Ave. 800 N. Quincy St.
Urbana, IL 61801 Arlington, VA 22217-5000

a NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) N00014-89-J-1272

C.ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO

6115N NR 442f-007

1 TITLE (Include Security Classification)

rhe SME User's Manual (SME Version 2E)
(Approved for public release; Distribution unlimited)

. PERSONAL AUTHOR(S)
rnan Ealkenhainer

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF EORT (Year, Month, Day) 15. PAGE COUNT

6Technical Report FROM 89-1-1 TO9 1-12-3 1 2-(a

.6. SUPPLEMENTARY NOTATION

7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Structure-mapping engine analogical processing

n5 -

9.- ABSTRACT (Continue on reverse iffiecessay and identify by block number)

This paper documents the Structure-Mapping Engine (SME), a general-purpose program for

studying analogical processing. It provides a comprehensive description of the program

and instructions for using it, including techniques for integrating it into larger

systems. One section demonstrates methods for configuring SME to a variety of mapping

preferences and suggests the range of theoretical variations available. <?.KL ...

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

/ UNCLASSIFIED/UNLIMITED 03 SAME AS RPT. 0 DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Dr_ James Lester 202-696-4503 ONR 1142CS

DO. FORM 1473.84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.



II

Technical Report UIUCDCS-R-88-1421I

The SME User's Manual
(SME Version 2E)

I

I Brian Falkenhainer

Qualitative Reasoning Group
Department of Computer Science

University of Illinois at Urbana-ChampaignI

December, 1988

U 1I
Abstract

This paper documents the Structure-Mapping Engine (SME), a general-purpose program for
studying analogical processing. It provides a comprehensive description of the program and
instructions for using it, including techniques for integrating it into larger systems. One section
demonstrates methods for configuring SM to a variety of mapping preferences and suggests the
range of theoretical variations available.

I
This research is supported by the Office of Naval
Research, Personnel and Training Research Programs,
Contract No. N00014-85-K-0559.

3' Approved for public release; distribution unlimited.

I
a



i CONTENTS

Contents

I 1 Introduction1
1.1 Conventions ......3 1.2 File Organization ...................................... 1

2 System Review 2
2.1 Algorithm Review ..................................... 3

2.1.1 Step 1: Local match construction (create-match-hypotheses) ........... 4
2.1.2 Step 2: Global Match Construction ........................ 8
2.1.3 Step 3: Compute Candidate Inferences (gather-inferences) .............. 9
2.1.4 Step 4: Compute Structural Evaluation Scores (run-rules) .............. 9

2.2 Adding Theoretical Constraints ..................................... 10

L 3 Declarations 10
-.1 Declaring Predicates ........ .................................... 10

3.2 Declaring Entities ........ ..................................... 11
3.3 Declaring Description Groups ....... ............................... 11
3.4 Adding new expressions ........ .................................. 12
3.5 Typed Logic ................................................. 12

4 Using the rule system 12
4.1 Rule file syntax ........ ....................................... 13

4.1.1 File declarations .................................. 13
4.1.2 Match Constructor rules ..................................... 13
4.1.3 Match Evidence rules ....... ............................... 14

4.2 Making SME simulate structure-mapping theory ......................... 15
4.3 Making SME perform as SPROUTER ................................ 16
4.4 Relaxing the identical predicates constraint ............................ 16I 4.5 Pure isomorphisms ........ ..................................... 16
4.6 Imposing externally established pairings ............................... 17

I 5 Representation Issues 19

6 Using SM 20
6.1 Installing SME ......... ....................................... 20
6.2 Running SME ......... ........................................ 20
6.3 Batch mode .............. ...................................... 22
6.4 Generalization mechanism ........................................ 23
6.5 Inspecting MH and Gmap evidence .................................. 24
6.6 Windows .......... .......................................... 25
6.7 System parameters ........ ..................................... 25
6.8 System utilities ........ ....................................... 26

f 7 User Hooks 26
7.1 Applications control over display ....... ............................. 26
7.2 Useful miscellaneous functions ................................... 27

7.2.1 Entities, predicates, and expressions ............................ 27I
7.. Dgous...................................2



i SME User's Manual ii
7.2.3 Creating and inspecting global matches .......................... 29

8 Algorithm Internals 30
8.1 The Match Function .................................... 30
8.2 Match Hypotheses ........ ..................................... 30
8.3 Global Mappings ......... ...................................... 30
8.4 Candidate Inference Generation ..................................... 313 8.5 Rule System ................................................. 31

9 Summary 32

10 Acknowledgements 32

References 32

Index 35

II
!

I
I
I
I
I
I



SME User's Manual

i1 Introduction

The Structure-Mapping Engine (SME) is a general tool for performing various types of analogical
mappings. SME was originally developed to simulate Gentner's Structure-Mapping theory of anal-
ogy [12,13,14]. It was hoped that the developed system would also be able to model the other
types of similarity comparisons sanctioned by Gentner's theory, such as literal similarity and mere
appearance. What ended up being developed 'was an extremely flexible and efficient system. Most
theoretical assumptions are left out of the program and are supplied through match rules. Thus,
while SME was originally designed to simulate the comparisons of structure-mapping theory, it may
simulate many others as well. Given a set of theoretical restrictions on what constitutes a reason-
able analogical mapping, one may implement these restrictions in the form of rules and use SME to
interactively test their consequences. This report is intended to make that task easier.

This paper is designed for those interested in using SME for studying analogical processing,
testing alternate theories, or as the mapping component in a larger system. It describes the options
and user support provided in SME, how to use it for testing theories, and how to integrate it with
other programs. For a discussion of the theory behind SME, the general algorithm, and descriptions
of the program in operation, one should consult (8,9] prior to reading this manual. Descriptions of
the use of SME in various research projects may be found in [4,5,6,7,13,15,23], while descriptions of
Gentner's Structure-Mapping theory appear in [11,12,13,14,10,9].

1.1 Conventions

3Throughout this guide, a few conventions will be used which should be explained at this time.

1. CommonLisp Packages. The SME system resides in its own package, SME, which is defined to
use CommonLisp. As a result, any reference to an SME function or variable must specify the
SME package, as in the function sme :define-predic ate. To simplify the discussion, we will
omit the package prefix when describing ME functions, macros, and variabes. In addition,

while the SME routines reside in the SME package, the structures it manipulates reside in the
general USER package.

2. The declarative interface. In general, the routines used to present data items to SME, such as
predicate definitions and concept descriptions, appear in two, functionally-equivalent forms.
These two types have a naming convention associated with each. The most common type is
the declarative or macro interface. The declarative routines do not evaluate their arguments
and match the syntactic form def routine-name. For example, to define the entity sun declar-
atively, one writes (defEntity sun). The second type is the functional interface, which is
present to support declarations by external programs. These routines evaluate their argu-
ments and match the syntactic form define-routine-name. For example, to define the entity
sun functionally, one writes (def ine-entity 'sun).

5 1.2 File Organization

SME is contained within the following twelve files:

config.]lsp The declarations for site specific parameters.

3 defs.l1sp The basic structure definitions and macros used throughout SHE.

bits.lisp Routines for creating and manipulating bit vectors.

3



SME User's Manual 2

bzns.lisp The belief-maintenance system (BMS) - a probabilistic TMS.

bms-tre.lisp The rule system and problem-solver front end for the BMS.

sme.lisp The SME top-level routines, such as initialization, defining facts about a concept, and

fetching and storing facts and concept descriptions.

match.isp The SME mapping algorithm.

match-rules-support.lisp A few functions useful for writing SME match rules.

display.lisp Machine independent output routines.

windowing.lisp Symbolics dependent interface routines.

batch.lisp Routines to enable execution in batch mode with a final report generated.

generalize.lisp Inductive generalization support.

2 System Review

The Structure-Mapping Engine can simulate a class of structural approaches to analogical map-

ping. In these approaches, there is a distinct stage of matching and carryover of predicates from

one domain (the base) into another (the target) within the larger analogy process. Furthermore,
although there are a number of differences, there is widespread agreement among these techniques
on one fundamental restriction [1,2,16,19,20,21,22,25]:

1. Structural consistency. If a final analogical mapping includes a predicate in the base paired
with a predicate in the target, then it must also include corresponding pairings between
each of their arguments. This criterion simply asserts that an analogical mapping must not

produce syntactically meaningless predicate calculus forms.

In SME, this restriction was enforced by the requirement of simulating Structure-Mapping theory;

its impact on the algorithm is described in [9]. However, this restriction is only part of that theory

and alone does not uniquely define a matching algorithm. Additional theoretical restrictions must
be supplied through match rules. This enables SHE to be used in exploring the space of theories

consistent with this single criterion. An additional restriction is enforced by default:

* One-to-one mapping: No base item (predicate or object) may be paired with multiple
target items. Likewise, no target item may be paired with multiple base items.

Enforcement of the one-to-one restriction is a global parameter which may be disabled. Support

is provided to implement variations of one-to-one within the match rules.

Match rules specify what pairwise matches are possible and provide local measures of evidence

used in computing the evaluation score. These rules are the key to SME's flexibility. To build a new

matcher one simply loads a new set of match rules. This has several important advantages. First,
we can simulate all of the types of comparisons sanctioned by Structure-Mapping theory with one

program. Second, the rules could in theory be "tuned" if needed to simulate particular kinds of

human performance. Third, a variety of other analogical mapping systems may be simulated for
comparison and theoretical investigation. The breadth of the space of these structural approaches

is suggested by the examples in Section 4.
In this section, the SHE matching algorithm is briefly reviewed, followed by a short discussion

of how theoretical guidelines may be added to the general mechanism. It is a summary of the

algorithm description appearing in [91, annotated with the SME functions that carry out each step.



SME User's Manual 3

I WATER-FLOW HEAT-FLOW

5 GREATER
GREATER FLOW(beaker,vialwater, pipe)

TEMPERATURE(coffee) TEMPERATURE (ice-cube)
PRESSURE (beaker) PRESSURE(vial)

GREATER FLOW(coffee, ice-cube, heat, bar)
LIQUID(water)

DIAMETER (beaker) DIAMETER (vial) LIOUID(coffee)

FLAT-TOP (water) FLAT-TOP(coffe)

I Figure 1: Simplified water flow and heat flow descriptions.

I 2.1 Algorithm Review

Given descriptions of a base and a target (called Dgroups), SNE builds all structurally consistent
interpretations of the comparison between them. Each interpretation of the match is called a global
mapping, or Gmap. Gmaps consist of three parts:

1. Correspondences: A set of pairwise matches between the expressions and entities of the two
dgroups.

2. Candidate Inferences: A set of new expressions which the comparison suggests holds in the
target dgroup.

1 3. Structural Evaluation Score: (Called SES for brevity) A numerical estimate of match quality.

For example, given the descriptions of water flow and heat flow shown in Figure 1, SME might,
depending on the current theoretical configuration, offer several alternative interpretations for this
potential analogy. In one interpretation, the central inference is that water flowing from the beaker
to the vial corresponds to heat flowing from the coffee to the ice cube. Alternatively, one could
map water to coffee, since they are both liquids.

The SME algorithm (see Figure 2) is logically divided into four stages:

1. Local match construction: Finds all pairs of (Baseltem, TargetItem) that potentially can
match. A Match Hypothesis is created for each such pair to represent the possibility that this
local match is part of a global match.

2. Gmap construction: Combines the local matches into maximal consistent collections of cor-
respondences.

3. Candidate inference construction: Derives the inferences suggested by each Gmap.

4. Match Evaluation: Attaches evidence to each local match and uses this evidence to compute
structural evaluation scores for each Gmap.

I



SME User's Manual

* Run MHC rules to construct match hypotheses (create-match-hypotheses).

" Calculate the Conflicting set for each match hypothesis (calculate-nogoods).

* Calculate the Eaps and NoGood sets for each match hypothesis by upward
propagation from entity mappings (generate-justifications and
propagate-descendants).

" During the propagation, delete any match hypotheses that have justification holes
(propagate-death).

" Merge match hypotheses into Gmaps (generate-pmaps).

1. Interconnected and consistent (generate-structure-groups).

2. Consistent members of same base structure (merge-base).

3. Any further consistent combinations (full-gmap-merge).

" Calculate the candidate inferences for each GMap (gather-inferences).

" Score the matches (run-rules).

1. Local match scores.

2. Global structural evaluation scores.

Figure 2: Summary of SME algorithm.

Each computation will now be reviewed, using a simple example to illustrate their operation. In
this example, the rules of structure-mapping theory are in use. It is important to distinguish the
general SME system from its behavior when using the rules of a particular theory. Hence, when
using the rules of structure-mapping theory, it will be called SMESWT.

2.1.1 Step 1: Local match construction (create-match-hypotheses)

SME begins by finding for each entity and predicate in the base the set of entities or predicates in
the target that could plausibly match that item (see Figure 3). Plausibility is determined by match
constructor rules, which are of the form:

(MHCrale ((Trigger) (BaseVariable) (TargetVariable)
/:test (TestForm)])

(Body))

The body of these rules is run on each pair of items (one from the base and one from the target)
that satisfy the condition and installs a match hypotheis which represents the possibility of them
matching. For example, to state that an expression in the base may match an expression in the
target whose functor is identical, we write:

(MHC-rule (:filter ?b ?t :test (equal (expression-functor ?b)
(expression-functor ?t)))

(install-MH ?b ?t))



SME User's Manual 5

\CH between entities (Erap)

Figure 3: Local Match Construction. The water flow and heat flow descriptions of Figure 1 have
II been drawn in the abstract and placed to the left and right, respectively. The objects in the middle

depict match hypotheses.

The likelyhood of each match hypothesis is found by running match evidence rules and com-
bining their results. The evidence rules provide support for a match hypothesis by examining the
structural and syntactic properties of the items matched. For example, the rule

(MEErule ((:intern (MH 7b ?t) :test (and (expression? ?b) (expression? ?t)
(eq (expression-functor ?b)

(expression-functor ?t)))))5 (assert! (implies same-functor (MH ?b ?t) (0.5 . 0.0))))

states "If the two items are expressions and their functors are the same, then supply 0.5 evidence
in favor of the match hypothesis.3 The rules may also examine match hypotheses associated with
the arguments of these items to provide support based on systematicity. This causes evidence for
a match hypothesis to increase with the amount of higher-order structure supporting it.

The state of the match between the water flow and heat flow descriptions of Figure 1 after
running these first two sets of rules is shown in Figure 4. There are several important things to
notice in this figure. First, there can be more than one match hypothesis involving any particular
base or target item. Second, our rules required predicates to match identically while they allowed
entities to match on the basis of their roles in the predicate structure. Thus while TEMPERATURE
can match either PRESSURE or DIAMETER, IMPLIES cannot match anything but IMPLIES. Third, not
every possible correspondence is created. Local matches between entities are only created when
justified by some other identity. This significantly constrains the number of possible matches in
the typical case.I

I



SME User's Manual 6

MH- 13
MH-i12 8: Liquid-3
8: Fat-top-4 T: Liquid-5
T: FRat-top-6

MH-14
8: water M14-9
T: coffee B: Wflow

T: H-flow

MH-10 M-il1
8: water B: pipe
T: heat T: bar

MN-i M14-6
B: >Pressure B: >Diameter
T: >Temperature T:. .>Temperature

MN-2 MH-3 MH--7 MH-8
B. Pressure-beaker B: Pressure-vial B: Diameter-i B: Dlameter-2
T: Temp-coff ee T: Temp-Ice-cube T: Temp-coffee T: remp--ice-cube

MH-4 MN-5
8: beaker 8: vial
T: coffee T: ice-cube

Figure 4: Water Flow / Heat Flow Analogy After Local Match Construction. Here we show
the graph of match hypotheses depicted schematically in Figure 3, augmented by links indicating
expression-to-arguments relationships. Match hypotheses which are not descended from others are
called roots (e.g., the matches between the GUATU predicates, NHS-i and MH-8, and the match for
the predicate FLOW, 111-9). Match hypotheses between entities are called Emezpe (e.g., the match
between beaker and coffee, M0-4). Emaps play an important role in algorithms based on structural
consistency.



I SME User's Manual 7

5 -! 1
34

(a) (b) (c)

MH ~f between predi .tes
- H between entities (Emap)

Figure 5: Water Flow - Heat Flow analogy after computation of Conflicting relationships. Simple
lines show the tree-like graph that the grounding criteria imposes upon match hypotheses. Lines
with circular endpoints indicate the Conflicting relationships between matches. Some of the original
lines from MH construction have been left in to show the source of a few Conflicting relations.

I -

3 - X between predicates
A --M between entities (Emap)

1 Figure 6: GMap Construction. (a) Merge step I: Interconnected and consistent. (b) Merge step
2: Consistent members of the same base structure. (c) Merge step 3: Any further consistent3 combinations.

I



SME User's Manual 8

2.1.2 Step 2: Global Match Construction

The second step in the SnE algorithm combines local match hypotheses into collections of global
matches (Gmaps). Intuitively, each global match is the largest possible set of match hypotheses
that depend on the same one to one object correspondences.

More formally, Gmaps consist of max-imal, structurally consistent collections of match hypothe-
ses. A collection of match hypotheses is structurally consistent if it satisfies two criteria:

1. One-to-one: No two match hypotheses assign the same base item to multiple target items or
any target item to multiple base items.

2. Support: If a match hypothesis MH is in the collection, then so are the match hypotheses which
pair up all of the arguments of MH's base and target items.

The preservation criteria enforces strict one to one mappings. The grounding criteria preserves
connected predicate structure. A collection is maximal if adding any additional match hypothesis
would render the collection structurally inconsistent.

The formation of global matches is composed of two primary stages:

1. Compute consistency relationships (calculate-nogoods): Here we generate for each match
hypothesis the sets of entity mappings it entails, what match hypotheses it locally conflicts
with, and which match hypotheses it is structurally inconsistent with. This information
simplifies the detection of contradictory sets of match hypotheses, a critical operation in the
rest of the algorithm. The result of this stage of processing appears in Figure 5.

2. Merge match hypotheses (generate-gmaps): Compute Gmaps by successively combining
match hypotheses as follows:

(a) Form initial combinations (generate-structure-groups): Combine interconnected
and consistent match hypotheses into an initial set of Gmaps (Figure 6a).

(b) Combine dependent Gmaps (merge-base): Since base and target dgroups are rarely
isomorphic, some Gmaps in the initial set will overlap in ways that allow them to be
merged. The advantage in merging them is that the new combination may provide
structural support for candidate inferences (Figure 6b).

(c) Combine independent collections (full-gmap-merge) . The results of the previous step
are next combined to form maximal consistent collections (Figure 6c).

A parameter option allows the support criterion to be weakened so that it does not cross the
boundaries of a relational group [7]. A relational group is distinguished as an unordered collection
of relational structures that may be collectively referred to as a unit. They correspond to the
abstract notion of a "set" and are associated to predicates taking any number of arguments. For
example, a set of relations joined by the predicate AMD defines a relational group. Other examples
include the axioms of a theory, a decomposable compound object, or the relations holding over an
interval of time. Intuitively, we would like to say that two groups correspond without requiring
that their contents are exhaustively mapped.

If base and target propositions each contain a group as an argument, the propositions should not
be prevented from matching if the groups' members cannot be exhaustively paired. For example,
the set of relations

'These two merge steps (b and c) are called by merge-paps, which is in turn called by generate-paps.



SME Uer's Man(a1 9

B: Implies [And(Pl,P2 oP3) - P43 (I)
T: Implies[And(Pl.P'), P']

should match better than the set of relations

5 B: Implies [And(PI, P2 P). P4  (2)

The original model of structural consistency would score (1) and (2) equally, since the Implies
relations of (1) would not be allowed to match. This is a particularly important consideration

when matching sequential, state-based descriptions (e.g., the behavior of a system through time).

The set of relations describing a pair of states often do not exhaustively match or are of different

cardinality. Yet, higher-order relations over states, such as temporal orderings, are vital and must

appear in the mapping.

2.1.3 Step 3: Compute Candidate Inferences (gather-Inferences)

Associated with each Gmap is a (possibly empty) set of candidate inferences. Candidate inferences.

are base predicates that would fill in structure which is not in the Gmap (and hence not already

in the target). If a candidate inference contains a base entity that has no corresponding target

entity (i.e., the base entity is not part of any match hypothesis for that gmap), SME introduces a

new, hypothetical entity into the target. Such entities are represented as a skolem function of the

original base entity (i.e., (: skolem base-entity)).
In Figure 7, Gmap #1 has the top level CAUSE predicate as its sole candidate inference. In

other words, this Gmap suggests that the cause of the flow in the heat dgroup is the difference in

temperatures. If the FLOW predicate was not present in the target, then the candidate inferences

for a Gmap corresponding to the pressure inequality would be both CAUSE and FLOW. Note that
GREATER-TEHN[DIA ETER(coffee), DIAMETE(ice cube)] is not a valid candidate inference for
the first Gmap because it does not intersect the existing Gmap structure.

I 2.1.4 Step 4: Compute Structural Evaluation Scores (run-rules)

Typically a particular pair of base and target will give rise to several Gmaps, each representing a

different interpretation of the match. Often it is desired to select only a single Gmap, for example

to represent the best interpretation of an analogy. Many of these evaluation criteria (including

validity, usefulness, and so forth) lie outside the province of Structure-Mapping, and rely heavily

on the domain and application. However, one important component of evaluation is 8tructerai -

for example, one Gmap may be considered a better analogy than another if it embodies a more

systematic match. SE provides a programmable mechanism for computing a stctural eealuation

score (SES) for each Gmap. This score can be used to rank-order the Gmaps in selecting the

"best" analogy, or as a factor in a more complex (but external) evaluation procedure. In SHEsMT,
the structural evaluation score is currently computed by simply adding the belief of each local

match hypothesis to the belief of the Gmaps it is a member of.
Returning to Figure 7, note that the "strongest" interpretation (i.e., the one which has the high-

est structural evaluation score) is the one we would intuitively expect. In other words, beaker maps

to coffee, vial maps to ice-cube, water maps to heat, pipe maps to bar, and PRESSURE maps

to TEMPERATURE. Furthermore, we have the candidate inference that the temperature difference is3 what causes the flow.

,



SME User's Manual 10

Rule File: literal-similarity.rules Number of Match Hypotheses: 14

Gmap #1: { (>PRESSURE >TEMPERATURE) (PRESSURE-BEAKER TEMP-COFFEE)
(PRESSURE-VIAL TEMP-ICE-CUBE) (WLOW EFLW) )}

Emaps: { (beaker coffee) (vial ice-cube) (water heat) (pipe bar) }
Weight: 5.99
Candidate Inferences: (CAUSE >TEMPERATURE HFLOW)

Gmap #2: ( (>DIAMETER >TEMPERATURE) (DIAMETER-1 TEMP-COFFEE)
(DIAMETER-2 TEMP-ICE-CUBE) }

Emaps: { (beaker coffee) (vial ice-cube) }
Weight: 3.94
Candidate Inferences: { }

Gmap #3: ( (LIQUID-3 LIQUID-5) (FLAT-TOP-4 FLAT-TOP-6) }
Emaps: { (water coffee) }
Weight: 2.44
Candidate Inferences: { }

Figure 7: Complete SME interpretation of Water Flow - Heat Flow Analogy.

2.2 Adding Theoretical Constraints

Given the general program, we may then add theoretical constraints in the form of rules. For

instance, the example just presented used the literal similarity rules of structure-mapping the-

ory. These rules augment SME's one-to-one mapping and structural consistency criteria with two

additional restrictions. First, evidence is computed according to aystematicity, that is, highly inter-
connected systems of relations are preferred over independent facts. Second, only identical relations

are allowed to match (i.e., CAUSE is not allowed to match GREATER-THA). Had another set of rules
been used, the results might have been substantially different. For example, the mere appearance

rules of structure-mapping theory would have determined that the water to coffee mapping was

the best, due to their superficial similarity.

3 Declarations

The descriptions given to SME are constructed from a user-defined vocabulary of entities and pred-

icates. This section discusses the conventions for defining languages for SNE's use.

3.1 Declaring Predicates

defPredicate name argument- declarations predicate-class [Macro]
kkey : expression-type logical-type

:commutative? {t I nil}
:n-ary? {t I nil}
:documentation descriptive-string

:eval procedural-attachment )

define-predicate name argument-declarations predicate-clas8 ... [Function]



I SME User's Manual 11

predicate-class is either function, attribute, or relation, according to what kind of predicate
name is. The argument-declarations allows the arguments to be named and typed. For example,
the declaration:

5(defPredicate CAUSE ((antecedent event) (consequent event)) relation)
states that CAUSE is a two-place relational predicate. Its arguments are called antecedent and
consequent, both of type event. The names and types of arguments are for the convenience of the
representation builder and any external routines (including the match rules), and are not currently
used by SME internally. Likewise, the predicate class may be very important to the theoretical
constraints imposed in the rules, but is ignored by SHE internally.5The optional declaration : expression-type indicates the logical type of an expression headed
by the given predicate. For example, the predicate throw may represent a kind of action, while
the predicate mass may represent an extensive-quantity.

The optional declarations : commutative? and :n-ary? provide SME with important syntactic
information. :commutative? indicates that the predicate is commutative, and thus the order of
arguments is unimportant when matching. :n-ary? indicates that the predicate can take any5number of arguments. Examples of commutative nary predicates include AND, SUM, and SET.

The :documentation option allows one to attach a descriptive string to a predicate. This
documentation may then be accessed through the lisp machine supplied interface (C-Shiit-D) orI some externally written routine. If no documentation is supplied, the list of argument names is
used. Another option provided strictly for potential user routines is the optional : eval parameter.
This allows one to declare a procedural attachment for a predicate.

3.2 Declaring Entities

defEatity name kkey type constant? [Macro]

def ine-Entity name kkey type constant? [Function]

Entities are logical individuals, i.e., the objects and constants of a domain. Typical entities
include physical objects, their temperature, and the substance they are made of. Primitive enti-
ties are declared with the defEntity form (a non-primitive entity would be (temperature sun),
which is a functional form representing a particular numeric temperature entity). Primitive entities
declared in this way represent global entity types, that is, they represent a class of entities rather
than an actual instance of an entity. When an entity type is actually used in a domain description,
a unique entity instance is created for that type (e.g., Mary is translated to Mary43).

Since the language is typed, each entity type can be declared as a subtype of an existing type
using the :type option. For example, we might have

(defEntity star :type Inanimate)
(defEntity Sun :type star)

to say that stars are inanimate objects, and our Sun is a particular star. Constants are declared3by using the :constant? option, as in

(defEntity zero :type number :constant? t)

I 3. Declaring Description Groups

defDeucription description-name [Macro]
I entities (entity1 , entity.-.... entitpj)

expressions (expression-declarationa)I



SME User's Manual 12

define-description description-name entities expressions [Function]

For simplicity, predicate instances and compound terms are called expressions. A Description
Group, or Dgroup, is a collection of primitive entities and expressions concerning them. Dgroups
are defined with the defDescription form, where expression-declaratione take the form

expression or
(expression :name expression-name)

For example, the description of water flow depicted in Figure 1 was given to SWE as

(defDescription simple-water-flow
entities (water beaker vial pipe)
expressions (((flow beaker vial water pipe) :name wflow)

((pressure beaker) :name pressure-beaker)
((pressure vial) :name pressure-vial)
((greater pressure-beaker pressure-vial) :name >pressure)
((greater (diameter beaker) (diameter vial)) :name >d.ameter)
((cause >pressure wflow) :name cause-flow)
(flat-top water)
(liquid water)))

All entities must have been previously defined and every entity referred to in the Dgroup's expres-
sions must appear in the entities list of the defDescription.

3.4 Adding new expressions

expression form dgroup-name &key expression-name update-structure? [Function

Expressions are normally defined as a side effect of creating a description group (Dgroup).
However, the facility is provided for dynamically adding new expressions to a Dgroup. The syntax
is essentially the same as for expressions declared within a defDescription. The expression's form
may refer to the names of existing Dgroup expressions and the form may be given a name. When
expression is used to add expressions to an existing Dgroup, the update-structure? keyword
must be invoked with a non-nil (e.g., T) value. This keyword indicates that the Dgroup's structure
must be reexamined, since the known structural roots will change as a result of this new expression.

3.5 Typed Logic

A mechanism exists for attaching types to predicates and their arguments (see defPredicate). This
facility is designed to constrain the operation of SME, particularly candidate inference generation.
However, it has not been extensively used to date. The ability to attach types may be usefrl for
consistency checking by external systems.

4 Using the rule system

The rale system is the heart of SME's flexibility. It allows one to specify what types of things might
match and how strongly these matches should be believed. This section describes the required
syntax for a rule set and different strategies for rule specification.



I
L SME User's Manual 13

4.1 Rule file syntax

A rule set, or rule file, consists of a declaration, a set of match constructor rules, and a set of match
evidence rules. In order to describe each, we will examine thesyntax and functionality of each part3 of the amt-analogy rule file.

4.1.1 File declarations

3 sne-rules-file identification-atring [Function

Each rule file must begin with the initialization command sme-rles-file. This function
clears the rule system in preparation for a new set of rules (rules are cached for efficiency) and
stores the name of the rule set for output identification purposes. For example, our sample rules
file begins with:2

(sme-rules-file "sat-analogy.rules*)

5 IThe rule file must then end with the tre-save-rules command:

tre-save-rules [Function]

1 4.1.2 Match Constructor rules

MHC-rule (trigger ?baae-variable ?target-variable [Macro]£ [: test test-form])
body

3 nstall-if base-item target-item [Function]

SNE begins by finding for each entity and predicate in the base the set of entities or predicates
in the target that could plausibly match that item. Plausibility is determined by match constructor
rules, which are responsible for installing all match hypotheses processed by SNM. There are two
types of constructor rules, each indicated by a different value for trigger. The first type of rule is
indicated by a :filter trigger. These rules are applied to each pair of base and target expressions,
executing the code in body. If the :test option is used, teat-form must return true for the body
to be run. For example, the following rule states that an expression in the base may match an
expression in the target whose functor is identical, unless they are attributes (a structure-mapping
analogy criterion):

(MHC-rule (:filter 7b ?t :test (and (eq (expression-fuictar ?b)
(expretsion-functr ?t))

(not (attribute? (expresicon-functor ?b)))))
(install-MH ?b t))

The second type of MHC rule is indicated by a trigger of : intern. These rules are run on each
match hypothesis as it is created. Typically they create match hypotheses between any functions
or entities that are the arguments of the expressions joined by the match hypothesis that triggered
the rule. The following is one of two that appear in smt-analogy.rules:

'Notlce the fie extension *rules. While rule files are not required to end in .'rle?, all user interface facilities for
simplifying the loading of rule fies depend upon this extension. Another useful point Is that rule les e typically
defined to be in the SIM package to avoid having to use sue: throughout the rule set.I



SME User's Manual 14

(MHC-rule (:intern ?b ?t :test (and (expression? ?b) (expression? ?t)
(not (commutative? (expression-functor ?b)))
(not (commutative? (expression-functor ?t)))))

(do ((bchildren (expression-arguments ?b) (cdr bchildren))
(tchildren (expression-arguments ?t) (cdr tchildren)))

((or (null bchildren) (null tchildren)))
(cond ((and (entity? (first bchildren)) (entity? (first tchildren)))

(install-ME (first bchildren) (first tchildren)))
((and (function? (expression-functor (first bchildren)))

(function? (expression-functor (first tchildren))))
(install-ME (first bchildren) (first tchildren)))

((and (attribute? (expression-functor (first bchildren)))
(eq (expression-functor (first bchildren))

(expression-functor (first tchildren))))
(install-E (first bchildren) (first tchildren))))))

Notice that the third test allows identical attributes to match, whereas the previous MHC rule
did not allow such matches. This design does not allow isolated attributes to match, but recognizes
that attributes appearing in a larger overall structure should be matched.

4.1.3 Match Evidence rules

rule nested-triggera body [Macro]
rassert I expresion koptional (belief+ 1. 0) (belief- 0. 0) [Macro]
assert ! expresion &optional (belief+ 1. 0) .(belief- 0. 0) [Function]
initial-assertion asertion-form [Macro]

The structural evaluation score is computed in two phases. First, each match hypothesis is
assigned some local degree of evidence, independently of what Gmaps it belongs to. Second, the
score for each Gmap is computed based on the evidence for its match hypotheses. The management
of evidence rules is performed by the Belief Maintenance System (BMS) [3). A BMS is a form of
Truth-Maintenance system, extended to handle numerical weights for evidence and degree of belief
(see [3] for a description of what the weights mean). Pattern-directed rules are provided that trigger
on certain events in the knowledge base.

The following is a simple rule for giving evidence to match hypotheses between expressions that
have the same predicate:

(initial-assertion (assert! 'same-functor))

(rule ((:intern (MR Th ?t) :test (and (expression? Tb) (expression? ?t)
(eq (expression-functor 7b)

(expression-functor ?t)))))
(if (function? (expression-functor ?b))

(rassert . (implies same-functor (MR ?b ?t) (0.2 . 0.0)))
(rasserti (implies same-functor (MR ?b ?t) (0.5 . 0.0)))))

There are two things to notice here in addition to the evidence rule. First, the proposition
same-functor was asserted to be true (a belief of 1.0) and then used as the antecedent for the
implication of evidence. In this way, the source of this particular piece of evidence is identi-
fied and is available for inspection. Second, the assertion of sane-functor was placed inside the
initial-assertion form. Since SM caches the current rule file, it must be told if there are any
functions embedded in the rule file that must be invoked each time SME is initialized.



' SME User's Manual 15

children-of? base-child target-child base-expression target-expression [Function]

Nested triggers within an evidence rule may be used to locate interdependencies between dif-
ferent match hypotheses. For example, structure-mapping's systematicity principle is implemented3in a local fashion by propagating evidence from a match hypothesis to its children:3

(rule ((:intern (MB TDI ?%I) :test (and (expression? ?bl) (expression? ?tl)
(not (commutative? (expression-functor bl)))))

(:intern (HE ?b2 ?t2) :test (children-at? ?b2 ?t2 b1 ?tl)))
(rasserti (implies (NH bl ?ti) (MB Tb2 ?t2) (0.8 . 0.0))))

U Evidence for a Gmap is given by:

(rule ((:intern (GAP ?gm) :var ?the-group))
(dolist (ih (gm-elements ?gm))

(assert! '(implies ,(mh-fo arm h) ,?the-group))))

The BMS allows a set of nodes to be declared special and will treat evidence to these nodes
differently. An additive-nodes function is provided which takes a set of BMS nodes and modifies
them so that their evidence is added rather than normalized using Dempster's rule. SME automat-

ically invokes additive-nodes on the derived set of Gmaps once they are created. Thus, when
I the above Gmap rule is executed and the implies statement is used to supply evidence from each

match hypothesis to the Gmap, that evidence is simply automatically added to the total Gmap
evidence rather than propagated using Dempster's probabilistic sum.

The following destructive rule is often used instead of the previous one to give a significant
speed up:

(rule ((:intern (OMAP ?gm) :var ?the-group))

(setf (node-belief + (Wi-bms-node ?gm)) 0)
(dolist (ih (p-elements ?gm))

(inct (node-belief+ (gm-bas-node ?gm))
(node-belief+ (ah-bins-node h)))))

This rule bypasses the BMS entirely, thus increasing speed by not creating justification links.
It also renders the additive-nodes distinction irrelevant. However, such rules must be used with
extreme caution. For example, the source of a Gmap's evidence cannot be inspected when using

l" this type of operation (see Section 6.5).

4.2 Making SAM simulate structure-mapping theory

The previous section examined the general structure of an SME rule file. In the process, the basic
elements of the structure-mapping-theory analogy rule set were presented. The literal similarity and
mere-appearance rules are essentially the same as the analogy rules. They differ in the first match
constructor rule. The analogy rule set has the test (not (attribute? (expression-functor
7b) ) ) which is absent from the corresponding literal similarity rule. Conversely, the corresponding
mere appearance rule forces the opposite condition (attribute? (expression-functor ?b)).
One should consult Appendix A of [91 for listings of all three structure-mapping rule sets.

2A number of functions (e.g., children-of?) are provided to simplify the writing of rules. These appear in the3file natch-rules-support. lisp.

I



SME User's Manual 16

4.3 Making SME perform as SPROUTER

The SPROUTER program [17 was developed as an approach to the problem of inductively forming
characteristic concept descriptions. That is, given a sequence of events (e.g., a list of pictures),
produce a single, conjunctive description which represents a generalized, characteristic description
of the sequence. SPROUTER generalized a sequence of N descriptions by finding the commonalities
between the first two descriptions, generalizing these common elements (i.e., variablize the liter-
als), and then repeating the process using this generalized description and the next, unprocessed
description. These steps would be repeated until the generalization had propagated through the
entire list of input descriptions.

SME may be used to implement SPROUTER's interference matching technique by giving it a set
of match constructor rules which require all matching predicates to have the same name (i.e., the
iteral similarity rules without the condition that allows functions with different names to match).

The SPROUTER generalization mechanism may then be implemented with the following algorithm:

Procedure SPROUTER (event-list)
begin

generalization :- pop(event-list)
while event-list

pairvise-match :m aatch(pop(event-list). generalization)
generalization : generalize (pairwise-match)

return generalization
end

4.4 Relaxing the identical predicates constraint

The current structure-mapping theory rules are sensitive to representation by requiring that rela-
tional predicates match only if they are identical. This is an important restriction that ensures
the structures being compared are semantically similar. However, it can also be overly restric-
tive. We are currently exploring different methods to relax the identicality requirement while still
maintaining a strong sense of semantic similarity. One approach, called the minimal ascension
principle, allows relations to match if they share a common ancestor in a multi-root is-a hierarchy
of expression types [7] (i.e., the identicality test in the match constructor rule is replaced by a
call to predicate-type-intersection?). The local evidence score for their match is inversely
proportional (exponentially) to the relations' distance in the hierarchy. This enables SME to match
non-identical relations if such a match is supported by the surrounding structure, while still main-
taining a strong preference for matching semantically close relations. This is similar to approaches
used in [1,16,24].

Problems with an unconstrained minimal ascension match technique are discussed in [7]. A
mapping approach which considers the current context when determining pairwise similarity is also
discussed.

4.5 Pure isomorphisms

While it is important to assure that the structures being compared are semantically similar, one
can in principle remove all semantic comparisons. This would allow match creation to be guided
strictly by SME's structural consistency and 1-1 mapping criteria and match selection to be based
strictly on systematicity.

Consider the isomorphic mapping between the formal definitions of numeric addition and set



SME User's Manual 17

Addition Union
NI + N2 = N2 + N1 $1 U $2 - S2 U S1
N3+(N4 N5) =- (N3 N4)+NS S3 U [S4 U S51 = [53 U 54] U S5
N6+O = N6 se U 0 S $6

Figure 8: Formal descriptions for addition and union.

E a union shown in Figure 8.4 These formal descriptions may be given to SME in the standard man-
ner, as in (plus N13 (plus N4 15)) for the left side of the associativity rule (the representation
(plus N14 15 result4S) also works, although it results in a slightly longer run time due to the
fattening of structure). When presented as formal definitions, the concepts of addition and union
are structurally isomorphic, independent of the meaning of the predicates. Thus, while it could be
argued that the predicates plus and union share a certain degree of semantic overlap, this example
demonstrates that it is possible to make SME ignore predicates entirely and simply look for isomor-S phic mappings. The rule set for isomorphic mappings is shown in Figure 9. (This is called the
ACME rule set, as it configures SME to emulate the ACME program on this example (18]). The only
constraint this rule set enforces is that each predicate has the same number of arguments. While it
includes the Structure-Mapping notion of systematicity to prefer systems of relations, it does not
enforce identicality of predicates. Using this rule set, SME produces the unique best mapping that
we would expect between the formal definitions of addition and union.I Since SME enforces the "same number of arguments" restriction by defeating any match hypothe-
ses that are not structurally sound, we could in principle effectively remove the rule file entirely.
This could be done with one match constructor rule to match everything with everything and one
evidence rule to measure systematicity. When this free-for-all rules file was given to PM, the same
single best Gmap was produced, but at the expense of increasing the run time from 13 seconds to£ 3.25 minutes.

4.6 Imposing externally established pairings

SIn certain situations, a number of entity and predicate mappings may already be known prior to
invoking SHE. These mappings may have been provided as an analogical hint from an instructor or
derived by the application program during earlier processing. For example, PHINEAS [4,5] uses SME5 to analogically relate observed physial phenomena to known theories of the world. PHINEAS uses
two analogical mappings to learn about a new physical process. First, behavioral correspondences
are established (i.e., what entities and quantities are behaving in the same manner). Second,
the relevant base theories are analogically mapped into the new domain, guided by the behavioral
correspondences. The two-stage mapping process solves the problem of using analogy in cases where
one does not have a pre-existing theory, as occurs with truely novel learning. The assumption made
in PHINEAS is that similar behaviors will have similar theoretical explanations. The first mapping
provides the correspondences between entities and functions required to guide the importation of
an old theory to explain a new domain in the second mapping.

5)1 includes facilities to simplify writing PHINEAS-like programs, by enabling the results of
earlier processing to constrain subsequent mapping tasks. These.routines are divided into two

4'Ths example Is taken from an advance copy of a paper by Holyoak and Thagard 1181. I include it here simply
to demonstrate the range of matching preferences available in 5)5

I



SME User's Manual 18

(MHC-rule (:filter ?b ?t :test (- (numargs (expression-functor ?b))
(numarge (expression-functor ?t))))

(install-MH ?b ?t))

;,; Intern rule to match entities (non-commutative predicates)
(MHC-rule (:intern ?b ?t :test (and (expression? ?b) (expression? ?t)))

(do ((bchildxen (expression-arguments ?b) (cdx bchildren))
(tchildren (expression-arguments ?t) (cdx tchildren)))

((or (null bchildren) (null tchildren)))
(if (and (entity? (first bchildren)) (entity? (first tchildren)))

(install-ME (first bchildren) (first tchildren)))))

;;" Give a uniform initial priming to each MH
(initial-assertion (assert! 'initial-priming))

(rule ((:intern (ME 7b ?t)))
(rassert! (implies initial-priming (ME ?b ?t) (0.2 . 0.0))))

;;;propagate interconnections - systematicity
(rule ((:intern (ME ?bI ?tl) :test (and (expression? ?bl) (expression? ?ti)))

(:intern (ME ?b2 ?t2) :test (children-of? ?b2 ?t2 ?bl ?tl)))
(rassert! (implies (ME ?bI ?ti) (MH ?b2 ?t2) (0.8 . 0.0))))

;;; Support from its M'S
(rule ((:intern (MAP ?gm) :var ?the-group))

(dolist (mh (gm-elements ?gm))
(assert! " (implies , (mh-form mh) ,?the-group))))

Figure 9: Rule set for forming general isomorphic mappings.

categories, declaration and test. The declaration routines tell SME what predicate and entity corre-
spondences are known a-priori. The test routines enable the match constructor rules to adhere to
these imposed constraints. Known mappings are declared through the following functions:

defGiven-Mappings (Macro]
entities ((base-entity target-entity1 )

(base-entityi target-entityi ) ... )

predicates (( base-predicate target-predicatel)
(base-predicatei target-predicate,) ... )

declare-given-mappings entities predicates (Function]
clear-given-mappings (Functioni

Both defGiven-Mappings and declare-given-mappings have identical functionality. The first
does not evaluate its arguments while the second one does. Disjunctive constraints may be imposed
by including all of the possible pairings (e.g., defining both (base-entity, target-entity,) and (base-
entityi target-entityk)).

Once a set of given mappings has been declared, the following test routines may be used within
the match constructor rules to enforce these mappings:



I SME User's Manual 19

sanctioned-pairing? base-item target-item [Function
paired-item? kkey base-item target-item [Function

sanctioned-pairing? tests if the given pair is one of the a-prior pairings, paired-item? takes
either a base item or a target item and returns true if the mapping for that item has been externally
determined.

These functions help in writing rules which respect established mappings. For example, the
following two rules are used in the PEINEAS system to allow observed behavioral correspondences
to constrain the mapping of the relevant theory:

(MHC-rule (:filter ?b ?t :teut (and (eq (expresion-functor 7b) (expression-functor ?t))
(not (paired-item? :base-item (expression-functor ?b)))
(not (paired-item? :target-item (expression-functor ?t)))))

(install-MH ?b ?t))

(MHC-rule (:filter ?b ?t :test (sanctioned-pairing? (expreesion-functor ?b)
(expreshion-functor ?t)))5 (install-ME 7b ?t))

When an analogy is being made between two behaviors, clear-given-mappings is used to
make SME perform in normal analogy mode. The discovered entity and function correspondences
are then given to declare-given-mappings prior to using SME to map the relevant theory.

35 Representation Issues

The proper representation becomes an issue in SME due to its significant impact on speed per-
formance. Hierarchical representations provide an important source of constraint on generating£ potential matches. They tend to make the semantic interrelations explicit in the structure of the
syntax. For example, Section 4.5 described a comparison between the laws of addition and union.
There it was noted that part of the additive associativity rule may be represented as (plus N3
(plus N4 N) or as the pair (plus N4 N5 result45) and (plus N3 result45 result3-45).
The latter "flat" representation takes more time for SME to process, sometimes a significant dif-
ference for large domain descriptions. This is because the functional representation makes the
associativity rule structurally explicit, while the fiat representation buries it among the tokens ap-
pearing as arguments to plus. However, it is important to note that SME is able to process domain
descriptions in any predicate-based format. It is simply speed considerations that render standard,
flat forms of representation undesirable.

Due to SME's ability to accept commutative, n-ary predicates, it is able to match arbitrary sets
(which must be of equal size at this time). This has two consequences. First, the explicit use of
sets becomes a viable form of representation. Thus, a theory might be represented concisely as

3 (Theory Ti (SET axiom-8 axiom-14 ...))

rather than as (Axiom-of Ti axiom-8), etc. Second, sets may be used to add structure to descrip-
tions. For example, the set representation for theories results in greatly reduced run times compared
to the non-set representation.5 I am currently investigating the use of a similar representation for
temporal states, as in:

$The difference in speed is due to the operation of merge step 2, which combines matches sharing a common base
structure. The set notation for theory Ti enables merge step 2 to know that matches for axloa-s and axioa-14
should be placed in the same gmap, thus reducing the number of possibilities in merge step 3.U



SME User's Manual 20

(Situation Si (SET (Increasing (Amount-of wateri))
(Increasing (Pressure wateri))
oo o ))

A PHINEAS problem which took SME 53 minutes (using (Increasing (Amount-of (at waterl

S1)))) was reduced to 34 seconds using this more structured representation.

6 Using SME

This section describes how to install SME on your machine, load it, and operate it.

6.1 Installing SME

*sae-language-file* [Variable]

*sme-defau t-rules* [Variable]

*sae-rules-pathname* [Variable]

*sme-dgroup-pathname* [Variable]

To configure SHE to a particular site, a handful of variables storing system directory information

must be edited and set to the appropriate values. These variables appear in conlig. lisp, a separate

file for this purpose. Of primary importance are *sme-language-file* and *sme-default-rules*.

These are used by sme-init to initialize the language and rule systems. The two variables storing

the rules and dgroup pathnames are used by the user interface routines.

*the-lisp-package* [Variable]

*sthe-user-package* [Viriable]

In most Common Lisp implementations, one package exists for general user definitions and an-

other exists for the lisp implementation. It is important to notify SME what these are for the Com-

mon Lisp in use. For example, on a Symbolics (version 6.2), the lisp package is called common-lisp

and the user package is calied cl-user. These are the default settings.

*ea.- systen-pathname* [Variable]

*she-files* [Variable]

These variables are used to automate compiling and loading. If the system is being loaded on

something other than a Symbolics or TI Explorer, the file windowing should not be included in the

list .sae-files*. Otherwise, it should be left in the list of SUE files, which is the default.
The SNE routines assume a set of naming conventions on domain description and rule files.

The names of files containing domain descriptions (defDescription) should end with a *. dgroup

extension. The name of a file containing a rule set should end with the *. rules extension.

6.2 Running SME

sne-init koptional (initialize-language? T) (initialize-rules? T) [Function]

This section gives a brief overview of the process of using SME for matching, generalization, and

inspection tasks.



SME User's Manual 21

I > (sme:smetntt)
Initializing SHE...

Loading default language file: prof :> falken>sAe>language
Loading default rules file: prof: >falken>sme>iteral-similarity .bin

Complet@.
T

> (load *prof:> falken> @me> simple-wate--flaw.dgroupM)

Loading PROF: > alken>sme>sixple-,Lter-flow. dgroup into package USER
#POPROF: >falkeasae>siale-w er-flow. dgroup

NIL
> (load prof:> falken> sme> uimple-heat-flaw.dgroup0)
Loading PROF: >falkex>sum>simple-hea*t-flow. dgroup into package USER
#P=PROF : >faJlken e>smaoimple-heat-flow. dgroup"
NIL
> (sme.-match 'swater-flow 'sheat-flow T)

SME4 Version 2E
Analogical Match from SWATER-FLOW to SHEAT-FLOW.

5 Rule File: literal-sixilarity.rules

1 # Entities I # Expr. i Mximum order I Average order I
Base Statisticsl 4 I 11 I 3 I 1.36 1

Taret Statistics I 4 I 6 I 2 I 1.17 1I S I s Gnaps Merge Step 3 CI Generation Show Best Only I

14 3 ACTIVE ACTIVE OFF

Total Run Time: 0 Minutes, 0.821 Seconds
BMS Run Time: 0 Minutes. 0.630 Seconds
Beat Gnaps: 3

Match Hypotheses:
(0.6320 0.0000) (PIPE4 BAA7)
(0.7900 0.0000) (FLAT-WATER FLAT-COFFEE)

o 0 ;a number of match hylpotheses appeared here
(0.8645 0.0000) (VATEI COFFEES)
(0.79)00 0.0000) (LIQUID-WATER LIQUID-COFFEE)

p 1: (BEAKER2 COFFEE) (DIM-BEAK TEMP-COFFEE) (VIALS ICE-CUBES)g (DIAM-VIAL TEDP-ICE-CUBE) (>DIAMETU >TMP)
Emaps: (BEUME COFEE) (VLJ ICE-CUBE6)

Candidate Inference8 :

3 o o ;Gmap #9 appeared here...

Gmap ft: (>PRESSURE >TEMP) (PRESS-VIAL TEP-ICE-CUBE) (PRESS-BEAKER TD(P-COFFEE)
(BEAKER2 COFFEES) (VIAL3 ICE-CUBES) (WATERI HEATS)

(PIPE4 BAR7) (WTLOW HFLOW)
Eaps: (BEAKER2 COFFEES) (VIAL3 ICE-CUBES) (WATERI HEATS) (PIPE4 BAR7)
Weight: 5,991660
Candidate Inferences: (CAUSE >TD4P EFLay)

3 Figure 10: Initializing and running SME.

Im



SME User-s Manual 22

1. Loading the files. To load or compile SME, the file config should be loaded and then
(load-sae) or (compile-sine) called. A def System definition is provided in system. lisp
for Symbolics machines.

2. System startup. This stage is only appropriate for full, lisp machine startup. The SME window
environment may be created with Select-S on a Symbolics or System-S on a TI Explorer.

3. Initialization. The function sme-mnit should be called to initialize the database. If initialize-
languagef is non-nil, the default language file (predicate definitions) will be loaded. If
initialize-rulesf is non-nil, the default rules file will be loaded. Prior to operating SME,
the language and rule systems must be established.

4. Loading Dgroups. Any description groups that are to be matched must be declared. These
declarations are typically stored in files, with the extension *.dgroup. If the window-
ing system is active, the command Load Dgroup will offer a menu of all *. dgroup files in
*sme-dgroup-pathname* to select what to load.

5. Analogical mapping. The function match may be called to form a mapping between two given
Dgroups. This is discussed in Section 7.2.3. If the windowing system is active, the command
Match will offer a menu to select base and target Dgroups. It is prior to this step that one
might want to think about wether to modify any system parameters (e.g., print the match
hypotheses, print only the best Gmaps, generate candidate inferences, etc.).

6. Describing Dgroups. Once Dgroups are defined, the describe-dgroup facility will provide a
description of any particular Dgroup.

7. Graphically displaying Dgroups. If the windowing system is active, Dgroups may also be
displayed graphically, through the Display Dgroup utility.

8. Generalizing. Once a mapping is formed, it may be generalized using the generalize function
or the Generalize command in the system menu.

9. Saving the results of a session. If the windowing system is active, the results of commands
like Match and Generalize are sent to the scroll window by default. These results may be
written to a file using the dump-scroll system utility.

10. Comparing two apparently identical Gmaps. When two Gmaps are formed that appear to be
identical, their differences can be identified using the compare-guaps system utility.

A trace of SME performing the basic mapping task is given in Figure 10. Each of the other options
are described in greater detail in the following sections.

6.3 Batch mode

run-batch-file pathname kkey (gmap-display :all) (gmap-statistics :none) [Function]
language-file pathname [Macro]
dgroup-directory pathname [Macro]
dgroup-file file-name [Macro]
rule-directory pathname [Macro]
rule-file file-name [Macro]
rule-sets krest rule-file-names (Macro]



SME User's Manual 23

3 C(-mo:Dgroup-Directory =prof :>falken>ae>N)

(sae :Dgroup-File "olar-system")
(ase :Dgroup-File Orutherford6)
Cam. :Dgroup-Fle usimple-water-flow')
(.se :Dgroup-FMle Oaiple-hoet-flov)

S(same: Rule-Directory 8proT:>faLlken)am)

(ame:Rule-Sets "literal-simlaritr uftue-anmlog7 Oattribuo-only*) ; iterate over each rule set

(se:Report -Comments *Sample run of SHE to deonstrate batch ode.8)

(amo :Smnd-Report-To 8heath: >f kaslnsample .dmpO :text-driver :LATEX)

(sae:lRun-atcher-On solar-system rutherford-atom) ; map thi pair once for each rule set
(se:lRi=-Ltcher-On awter-flow sheat-flow) ; map thi pair once for each ride set

5 Figure 11: Sample SME batch file.

report -comments string [Macro]
send-report-to pathname kkey (text-driver :LPR) (style :STANDARD) [Macrol
run-matcher-on base-name target-name [Macroj
detPostMatcher function [Macro)

SHE is normally used as an interactive utility or as a module to some larger program. However,
when performing statistical analyses across a broad space of matching preferences (i.e., rule sets)
and domain descriptions, an interactive format soon becomes inconvenient. Utilities are provided
so that a file of SME instructions may be defined and then executed using run-batch-f ile (e.g.,
Figure 11). This would instruct SME to perform a series of matches, potentially over a variety of
rule sets and domain descriptions, and generate a detailed report of the execution and a summary
of the results. When a single rule set is specified using rule-file, all subsequent matches (invoked
by run-matcher-on) will use this rule file until another one is specified. Using rule-sets, one
may instead specify a series of rule files to be used, so that a single run-matcher-on command
will cause SHE to run once for each rule file in the list. If a user-defined function name is given to
defPostatcher, this function will be called after each match is performed, in case special post-
match routines are desired or extra information is to be added to the report being generated. A
variety of text drivers are supported for report generation (send-report-to), such as : lpr (line
printer), :latex, and : troff.

6.4 Generalization mechanism

generalize gmap [Function]

The generalize function takes a global mapping structure and returns three alternate general-
izations (using the Common-Lisp values protocol), each one successively larger than the previous:

1. Literally common aspect8 only. This generalization locates those sub-structures which are
identical in both base and target Dgroups. This is a type of generalization typically found in



SME User's Manual 24

Generalizations for Match from SWATER-FLOW to SHEAT-FLOW:

Generalization #1 (Literally Common Aspects Only):
(FLOW ENTITY6 ENTITY8 ENTITY13 ENTITY14)

Generalization #2 (All Common Aspects Only):
(FLOW ENTITY6 ENTITY8 ENTITY13 ENTITY14)
(GREATER (FUNCTIONO ENTITY6) (FUNCTIONO ENTITYS))

Generalization #3 (Maximal Generalization):
(CAUSE (GREATER (FUNCTIONO ENTITY6) (FUNCTIONO ENTITY8))

(FLOW ENTITY6 ENTITYS ENTITYI3 ENTITY14))

Figure 12: SME generalizations for the simple water flow - heat flow analogy.

inductive generalization programs.

2. All common aspects only. In addition to common, identical substructures, this generalization
includes cases where functions of a different name were allowed to match. Where this occurs
in the common structure, a skolemized function predicate is created.

3. Maxima generalization. The largest generalization (in terms of amount) includes all candidate
inferences sanctioned by the Gmap, as well as the common substructure of generalization
mode 2. This represents the entire shared structure between the two Dgroups under the
assumption that the candidate inferences are valid.

For example, given the best Gmap from the simple water flow - heat flow analogy described in
Section 2.1 and shown in Figure 7, SME will produce the set of generalizations shown in Figure 12.
The first generalization indicates that the only thing in common between the two situations is the
existence of flow. The second generalization loosens the meaning of 'in common" to include the
fact that a quantity associated with the source of flow was greater than the same quantity measured
for the destination. The final generalization assumes that this inequality, which was the cause of
flow in the water flow domain, is actually the cause of flow for both situations.

6.5 Inspecting AM and Gmap evidence

match-evidence-inspector (Function]

When developing a theory about what types of rules should be used and how much evidence for
a particular match they should provide, it is often useful to explicitly see what the different sources
of evidence were for a particular match item. The system utility match-evidence-inspector may
be used to display a trace of the entire evidence facility or just the evidence for a particular match
hypothesis or Gmap. For example, the following information was printed out about the pressure
to temperature match hypothesis in the water flow - heat flow analogy:

(MH F#PRESS-BEAKER F#TEMP-COFFEE) has evidence (0.7120, 0.0000) due to
IXPLICATION((MH F#OPRESSURE F#OTEMP)) (0.5200, 0.0000)
IMPLICATION (CHILDREN-POTENTIAL) (0.4000. 0.0000)



ISME User's Manual 25

While the following information appears for the best Gmap in this analogy:

(GMAP #GM3) has evidence (5.9917, 0.0000) due to
IMPLICATION((MB F#VFLOW F#UFLOV)) (0.7900, 0.0000)
IOPLICATION((M I#PIPE20 I#BAR23)) (0.6320, 0.0000)
IMPLICATION((41 I#ATERi7 I#HEAT24)) (0.6320, 0.0000)
IMPLICATION((M I#VIAL19 I#ICE-CUUB22)) (0.9318, 0.0000)
INPLICATION((M IBEAKER18 I#COFFEE21)) (0.9318. 0.0000)
IMPLICATION (0M4 F#PRESS-BEACER F#TEMP-COFFEE)) (0.7120, 0.0000)
IMPLICATION (MH F#PRESS-VIAL F#TEXP-ICE-CUBE)) (0.7120, 0.0000)
IMPLICATION ((M( F#>PRESSURE F#>TEMP)) (0.6500, 0.0000)

The inspection facility will not work for Gmaps if their scores were produced by an external (to
the BMS), destructive operation. One such destructive rule appeared at the end of Section 4.1.3.

I 6.6 Windows

dump- scroll-menu [Function]
dump-scroll output-patname [Function]
clear-scroll [Function]
select-windowing- con iguration [Funtion]
select-scroll [Function]
select-double-scroll [Function]
select-graphics [Function]
select -large- graphic s [Function]

select-split [Function]
*sme-frame* [Variable]

*graphic s -pane* Variable]

*scroll-pane* Variable]
*spazre-scroll-pane* [Variable]
*lisp-pane* [Variable]

The windowing system is lisp machine dependent and appears in the file windowing, lisp.
The loading of this file is optional. When the windowing system is used, a number of window3configurations are possible, such as having a single scroll window, two side by side, a single graphics
window, or a scroll and graphics window side by side. These configurations may be selected
through their individual functions (e.g., select-scroll), or through the central configuration3facility select-scroll-graphics. By default, when the windowing system is active, all SHE output
is sent to the primary scroll pane. When both scroll windows are in use, the configuration facility
allows one to specify which scroll window is currently active. The two scroll dumping routines
write the contents of the primary scroll window to a specified file. Output sent to the secondary
(scratchpad) scroll pane is for observation only and cannot be written to a file.

36.7 System parameters

*sae-parameters* [Variable]
*parameter-menu-options* [Variable]
defSME-Parameter variable-name string-description type koptional type-choices [Macro]

The defSME-Paraeter form adds a new variable to the list of known SHE parameters. This
list is used by the windowing interface routines to query the user about possible parameter set-
tings. It is provided primarily for application programs wanting to use the standard SHE parameterI



SME User's Manual 26

WRHN hhich GMas to display: AN meps lest Gmaps No Gmaps
PRINT) Display the Gns statistica table?: Am asps selt aeeps N las mq
PRINT) Display the Dgroup statistics table?: Ye No
PRINT) Display all the Match Hypotheses?: Yes No
Require one-to-one co-rtspondenes?: Ya No
Allow. structural coneistancy exceptions for relational groups?, Yes Ms
Generate Candidate Inferences ?: Ye No
Run Gnap Merge Stop 3?: Yes No

eB" Flags Yes No
Indicate All Changes to the Knouledge Bases YesN
Default SME Language Definitions File: *prof: )flken>sns lng~*
Default SE Doroup Patkhnmae 'profs)falkn),ene)"
Default SHE Rules Patwnsaez 'Prof:)felken)-asm)I
Eit 0

Figure 13: SME System Parameters.

setting facility. TL arguments to delSME-Pauraeter correspond to the appropriate definitions
for the choose-variable-values function of your particular machine. For example, the following
declaration appears in match. lisp:

(deSM-Parameter *display-all-MH* "Display all the Match Hypotheses" :boolean)

change-parms [Function]

The windowing system provides a menu facility for viewing and changing the current values of
system parameters. This menu is shown in Figure 13.

6.8 System utilities

*system-utilities-menu* V Variable]

defSME-Utility string-name l[p-form [Macro]
menu-utilities (Function]
get-dgroup [Function]
get-rules [Function]

The SME system utilities are the options that appear when the Utilities command is evoked,
the right mouse button is pressed, or the function menu-utilities is called. These utilities include
changing the system parameters, choosing to load a Dgroup or rule file from those in the defined
directories, and clearing or writting to file the contents of the scroll window. These routines are
lisp machine dependent. The following declaration appears in match. lisp:

(defiSN-Utility "Inspect Evidence" (match-evidence-inspector))

7 User Hooks

This section describes the global variables and routines that are available to the user and application
programs for the creation and inspection of analogical mappings.

7.1 Applications control over display

* sie-output- stream* [ Variable]
*vindoving?* [ Variale]
*sme-graphic s-output* [ Variable]



U SME User's Manual 27

All SME textual display routines send their output to *sme-output-stream*. By default, the
value of this variable is T, which causes output to be sent to *terminal-io*, CommonLisp's default
pointer to the user's console. When *s3e-output-stream* is a scroll window (determined by the
presence of an :append-item handler), the appropriate scroll window routines for sending display
items are invoked. Otherwise, text is sent to the current output stream using format. Text routines
are machine independent.

In a similar manner, all SME graphics output is sent to the current * sae-graphics -output*
window. Graphics output is lisp machine dependent and relies on the ZRAPH graphics system.

When the SME windowing system is in operation, *se-output-stream* is set to the pri-
mary SHE scroll pane (*scroll-pane*), *sue-graphics-output, is set to the SME graphics pane
(*graphics-pane*), and windowing? is set to T.

sue-f ormat format-string &rest format-args [Macro]
sue-print string [Function]
sme-terpri koptional (N i) [Function]

These routines provide a general interface for sending textual output to the current SME output
stream. sue-format is equivalent to CommonLisp's format routine, except that the printed output
is always followed by a newline. The sue-print routine is provided for simple situations where
only a string is printed or for situations requiring the standard use of format, as in building up
a line of text through multiple invocations. The printed output of sue-print is followed by a
newline. When the routine is used for multiple calls of format, it should be used in conjunction
with CommonLisp's with-output-to-string, as in:

(sme-print
(with-output-to-string (stream)

(format stream "Beginnin of a line... ')
(format stream " middle of a line...")
(format stream " end of a line.")))

When a whole set of operations are carried out within the context of a single sue-print, one
must be careful not nest calls to ae-print (e.g., calling a function in the cnntext of an sme-print
which itself invokes sme-print). Such nesting will cause output to appear backwards from what
was intended and may cause the output stream to close improperly.

7.2 Useful miscellaneous functions

Data exists within SME in three forms: (1) local items such as entities, predicates, and expressions,
(2) description groups (Dgroups), and (3) analogical mapping information. The routines to create
and query these items are described in the following sections.

7.2.1 Entities, predicates, and expressions

entity? item [Function

entity-type? item [Function]
entity-name? symbol [Macro]
f etch-entity-def iuition symbol [Macro]
entity-doain symbol [Macro)s ymbol [Macro]3 c~onstant;-entity? smo Mco

U



SME User's Manual 28

Entities declared through def Entity represent global entity types, that is, they represent a class
of entities rather than an actual instance of an entity. When an entity type is used in the definition
of a description group, a unique entity instance is created for that type (e.g., beaker is translated
to beaker73). Thus, a given entity token will represent either a type or an instance. The structure
predicate entity? returns true if the given item is an entity-instance structure, while entity-type?
returns true if the item is an entity-type structure. The macro entity-name? returns true if
the given symbol represents either an entity type or instance. fetch-entity-definition will
return the entity-type structure for an entity type token or the entity-instance structure for an
entity instance token. The routines entity-domain and constant-entity? refer to the type and
constant? keyword values given to defEntity when the corresponding entity type was created.

*sme-predicates* [Variable]
f etch-predic ate-def inition predicate-saymbol [Macro]
predicate? symbol (Macro]
predicate-type predicate-symbol [Macro]
relation? predicate-symbol [Macro]
attribute? predicate.symbol [Macro]
function? predicate-symbol (Macro]
commutative? predicate-symbol (Macro]
n-ary? predicate-symbol [Macro]
arg-list predicate-symbol [Macro]
numargs predicate-aymbol [Macro]
expression-type predicate-aym6ol [Macro
eval-form predicate-aymbol [Macro]

These routines provide the facility to access the various predicate properties defined with the
defPredicate form. fetch-predicate-definition returns the actual sme-predicate structure
containing all the information about a given predicate.

fetch-expression expression-name dgroup koptional (error-if-absent? T) [Function]
expression-functor expression-structure [Function]
fully-expand-expression expression-structure dgroup [Function]
fully-expand-expression-form expresion-form dgroup [Function]

An "expression" represents an actual predicate instance within a Dgroup. Notice that this
includes terms corresponding to function applications as expressions. Each use of a predicate gets
its own expression with its own name, so that a higher-order relation gets translated into several
expressions, with some having expressions as arguments. These routines allow one to retrieve and
inspect expressions in the database. fetch-expression returns the expression structure with the
given name.

The routines fully-expand-expression and fully-expand-expression-form are useful for
examining the form of an expression. Typically, the expression (greater-than (diameter beaker)
5) is stored as the expression greater-than23, which has the form (greater-than diameter24
5). These routines return a fully expanded expression form, where all expression names are replaced
by their corresponding forms.



I SME User's Manual 29

I 7.2.2 Dgroups

fetch-dgroup dgroup-name koptional create F [Function]
return-dgroup dgroup-or-dgroup-name [Function]

I Description groups (Dgroups) are stored in a simple data base managed primarily by routines in
sue. lisp. The general procedures for Dgroup and expression creation were described in sections 3.3
and 3.4. A Dgroup may be retrieved by name using fetch-dgroup, or created if create? is non-nil
and no Dgroup with the given name currently exists. return-dgroup is designed for routines that
may take either an actual Dgroup or simply a Dgroup name (e.g., fetch-expression). It will5 cause an error if the Dgroup does not previously exist.

describe-dgroup dgroup [Function]
menu-display-dgroup [Function]
menu-display-pairs (Function]

A Dgroup may be textually described using describe-Dgroup, which writes to the SME output
stream. Graphical display is provided in the windowing system by menu-display-dgroup for a
single Dgroup or menu-display-pairs for a display of two Dgroups side by side.

U 7.2.3 Creating and inspecting global matches

match base-name target-name koptional display? [Function]
best-guaps koptional (gmaps *gmaps*) (percentage-range 0.02) [Function]
display.match base target koptional (total-run-time 0) (bins-run-time 0) [Function]

The match function is the central SME procedure. Given the names of two Dgroups, it forms the
complete set of global mappings between them. If displayf is non-nil, a description of the results
will be sent to the current SIE output stream. The function itself returns two values, the total run

time of the match process in seconds and the subset of that time spent running the BMS evidence
rules. The analogical mapping results are stored in the following global variables, which are then
accessible by the user or application program.

*base* [ Variable]
*target* [ Variable]
*match-hypotheses* [ Variable]I *gmaps* [ Variable]

The Gmap(s) with the highest evaluation score are retrieved by best-gaps, which returns all
Gmaps having a score within a given percentage (default is 2%) of the highest score. best-gaps
returns two values: the list of best Gmaps and the actual real-valued highest score.

5 compare-gpaps gmapl gmapR koptional display? [Function]

Occasionally, SME will produce two or more "best" Gmaps that appear to be identical yet have
been classified as distinct. When these Gmaps are large, the 'here's the set of match hypotheses"
output format can make it frustrating to find what the slight differences are between a pair of
Gmaps. When given two Gmap structures, compare-gaps will return (using values) the list of
the match hypotheses that are uniquely part of the first Gmap and a list of match hypotheses that
are uniquely part of the second Gmap (i.e., (gmapl - gmapR) and (gmap2 - gmapl)). When the
windowing system is active, this option is available through the system utilities menu.U



SME User's Manual 30

8 Algorithm Internals

This section quickly describes a few internal points of the program in case one has specialized needs
for interfacing to the code. It assumes knowledge of CommonLisp and the realization that for many
questions, the only feasible answer must be to examine the SME program.

8.1 The Match Function

create-match-hypotheses base-dgroup target-dgroup [Function]
run-rules [Function]
calculate-nogoods base-dgroup target-dgroup [Function]
generate-gmaps [Function]
gather-inferences base-dgroup target-dgroup [Function
intern-gmaps [Function

The function match is primarily a sequence of calls to these functions. create-match-hypotheses
runs the match constructor rules to form the individual match hypotheses. The BMS evidence rules
are then run on these match hypotheses (run-rules) and their dependence and inconsistency rela-
tionships are determined (calculate-nogoods). The function generate-gmaps executes the three
merge steps, resulting in the set of complete global mappings being placed in the variable *gmaps*.
The candidate inferences each Gmap sanctions is then calculated (gather-inferences) and addi-
tive BMS nodes for each Gmap are formed (intern-gmaps), allowing the evidence rules to run on
each Gmap.

8.2 Match Hypotheses

match-hypothesis [Defstruct]
nh-f arm match-hypothesis [Subst]
nh-base-item match-hypothesis [Subst]
nh-target-item match-hypotheris [Subst]
nh-bms-node match-hypothesis [Subst]
node-belief+ bins-node [Subat]
nh-plist match-hypothesis [Subat]
*natch-hypotheses* [Variable]

Most programs using SHE will need to interact with the match hypothesis structures. Slots to
this structure type use the ah- prefix. There are several slots that might be important. The MH
form, which is a list of (MR <base-item> <target-item>), is found using h-form. This is the form
used for triggering the ME evidence rules, and is asserted in the BMS for each match hypothesis.
The base and target items are expression or entity structures. The base item or target item may be
obtained directly using mh-base-Item and nh-target-item, respectively. The BMS node for each
match hypothesis is found by nh-bas-node. In turn, the weight for that node may be obtained
using node-belief+. Finally, each match hypothesis structure has a property list slot (mh-plist)
which may be useful for various purposes.

8.3 Global Mappings

global-mapping [Defstruct]
gm-id global-mapping [Subst]



SME User's Manual 31

gm-elements global-mapping [Subst]
gm-emaps global-mapping [Subst]
gm-base global-mapping [Subst
gm-target global-mapping [Subst]
gm-inferences global-mapping [Subst]
gm-bus-node global.mapping [Subut]
ga-plist global-mapping [Subat]
*gmaps* [Variable]

Each Gmap is stored as a global-mapping structure. Slots to this structure type use the gm-
prefix. Each Gmap is assigned a unique integer identifier, found through gm-id. The Gmap form
used by the BMS is not explicitly available, but is asserted as (Gaap <gmap-atructure>). The
match hypotheses associated with a Gmap are stored in gm-elements, while the subset of these
that are entity mappings is stored in gm-emaps. The candidate inferences sanctioned by the Gmap
appear in gm-inferences and are stored as a simple list data type, using the syntax defined in
Section 3.3 for description group expressions.

18.4 Candidate Inference Generation

The original candidate inference generator, as described in [8], will take any base structure "inter-
secting the Gmap structure'. The newer (V. 2) edition only takes base structure "intersecting a
Gmap root". Thus, the newer edition is more cautious and far more efficient than the older edition.
Both versions of the code are available (in match. lisp), with the default being the newer, more
cautious versior. There are theoretical arguments for and against each approach. For example, one
might want to use only the inferences from the newer, more cautious approach at first since they
are supported by more target knowledge and thus more likely valid. If an analogy proves fruitful,
one may want to relax these constraints, and use the older version to find out what additional
inferences might be made.

1 8.5 Rule System

tre-rules-file [Function]
tre-save-rales [Function]
tre-init [Function]
restore -rles [Function]

Srun-rules [Function]
*tre-rules-saver* [Variable]
*initial-assertions* [Variable]

When a new rules file is loaded, the sie-rules-file command at the top of the file initializes
the BMS rule system prior to loading the new set of rules. At the bottom of the rules file, the
fresh, just-loaded set of rules are saved in the global variable *tre-rules-saver* by the command
tre-save-rules. This variable saves the status of the rule counters and the list of initial rules. A
similar variable, *initial-assertions*, is used to store all assertions appearing in the rules file.3 When the BMS is run, new rules may be created and added to the known set of rules. As a result,
each time match is invoked, the BMS is reinitialized to its status just after loading the rule file,
that is, it is restored to the status indicated in *tre-rules-saver*.

This facility may be used by application programs to save different rule sets in memory and
swap them as needed, without having to load rule files each time. For example, suppose SME is



REFERENCES 32

invoked, which will cause it to run the current rule set for Gmap scoring. If a second scoring
criterion is then desired, a second set of rules may be invoked using code of the form:

(lot ((save-rules sme:*tre-rules-saver*) ;save the prevuious rule set
(save-assertions sme:*initial-assertions*))

(setq sme:*tre-rules-saver* *my-other-ules-set-rules*)
(setq se: *initial-assertions* *.y-other-rules-set-assertious)
(sme: tre-init) initialize with new rules
(sme:zun-rules) ,rn the now rule set
(setq sue:*tre-rules-saver* save-rules) setore the original rules
(setq sue :*initial-assertions* save-assertions))

This saves SME's normal rule set, runs a different one, and then restores the rule set to its
previous value. In this example, tre-init was used, which fully initializes the BMS. If the desire
is simply to supply additional rules without destroying the current BMS state, restore-rules
should be used in place of tre-init. The variables corresponding to "my-other-rules-set" may be
initialized by a similar program which saves the current rule set, loads the desired "other rule set"
file, sets the "my-other-rules-set" variables from *tre-rules-saver* and *initial-assertions,
and then restores the original rule set.

9 Summary

The SME program has been described from the perspective of how to actually use it. A number of
methods have been presented about how to configure SME to perform a variety of different types
of matches. It is hoped that SME may serve as a general mapping tool for research on analogical
mapping, allowing researchers to focus on the more substantive issue of general theories of analogical
mapping, as opposed to worrying about implementation details. The latter has the unfortunate
effect of producing the repeated scenario in which analogy researcher A goes to analogy researcher
B and says "My program can do X, which yours cannot", followed by researcher B returning a
month later with this simple modification added. By testing different theories within the same
program, we may now compare the more critical "This is a logical consequence of my theory". A
program does not a theory make. It can, however, function as a useful analytical tool.

Of course, not all of the problems of implementing analogical mapping have been solved. Most
critical is redesigning the potentially combinatoric merge step 3, perhaps using either a heuristic
search or connectionist relaxation network as suggested in [9]. Of theoretical relevance is the
appropriateness of the abstract structural approach which SME embodies.

10 Acknowledgements

The development of SME has been a collaborative effort with Ken Forbus and Dedre Gentner, with
significant influence provided by Janice Skorstad. This work has also benefited from discussions
with Steve Chien, John Collins, and Ray Mooney.

This research is supported in part by an IBM graduate fellowship and in part by the Office of
Naval Research, Contract No. N00014-85-K-0559.

References

[I] Burstein, M., Concept formation by incremental analogical reasoning and debugging, Pro-
ceedings of the Second International Workshop on Machine Learning, University of Illinois, I

1



3 REFERENCES 33

Monticello, Illinois, June, 1983. A revised version appears in Machine Learning: An Artifi-
cial Intelligence Approach Vol. II, R.S. Michalski, J.G. Carbonell, and T.M. Mitchell (Eds.),
Morgan Kaufman, 1986.

[2] Carbonell, J.G., Learning by Analogy: Formulating and generalizing plans from past ex-
perience, in: Machine Learning: An Artificial Intelligence Approach, R.S. Michalski, J.G.
Carbonell, and T.M. Mitchell (Eds.), Morgan Kaufman, 1983.

1 [31 Falkenhainer, B., Towards a general-purpose belief maintenance system, in: J.F. Lemmer
& L.N. Kanal (Eds.), Uncertainty in Artificial Intelligence, Volume II, 1987. Also Technical3 Report, UfUCDCS-R-87-1717, Department of Computer Science, University of Illinois, 1987.

[4] Falkenhainer, B., An examination of the third stage in the analogy process: Verification-
Based Analogical Learning, Technical Report UIUCDCS-R-86-1302, Department of Computer
Science, University of Illinois, October, 1986. A summary appears in Proceedings of the Tenth
International Joint Conference on Artificial Intelligence, Milan, Italy, August, 1987.

[5] Falkenhainer, B., Scientific theory formation through analogical inference, Proceedings of the
Fourth International Machine Learning Workshop, Irvine, CA, June, 1987.

[61 Falkenhainer, B. The utility of difference-based reasoning, Proceedings of the Seventh National
Conference on Artificial Intelligence, St. Paul, August, 1988.

[7] Falkenhainer, B., Learning from physical analogies: A study in analogy and the explanation
I process, Ph.D. Thesis, University of Illinois, December, 1988.

[8] Falkenhainer, B., K.D. Forbus, D. Gentner, The Structure-Mapping Engine, Proceedings of3 the Fifth National Conference on Artificial Intelligence, August, 1986.

[9] Falkenhainer, B., K.D. Forbus, D. Gentner, The Structure-Mapping Engine: Algorithm and
Examples, Technical Report UIUCDCS-R-87-1361, Department of Computer Science, Univer-
sity of Illinois, July, 1987. To appear in Artificial Intelligence.

[10] Forbus, K.D. and D. Gentner. Learning physical domains: Towards a theoretical framework, in:
Machine Learning: An Artificial Intelligence Approach Vol. II, R.S. Michalski, J.G. Carbonell,
and T.M. Mitchell (Eds.), Morgan Kaufmann, 1986.

[11] Gentner, D. The Structure of Analogical Models in Science, BBN Tech. Report No. 4451,
Cambridge, MA., Bolt Beranek and Newman Inc., 1280.

[12] Gentner, D. Structure-Mapping: A Theoretical Framework for Analogy, Cognitive Science
7(2), 1983.

[13] Gentner, D. Mechanisms of analogy. To appear in S. Vosniadou and A. Ortony, (Eds.), Simi-3 larit and analogical reasoning, Cambridge University Press, Oxford.

[14] Gentner, I. Analogical inference and analogical access, To appear in A. Preiditis (Ed.), Analog-
ica: Proceedings of the First Workshop on Analogical Reasoning, London, Pitman Publishing
Co. Presented in December, 1986.

[15] Gentner, D., B. Falkenhainer, and J. Skorstad Metaphor: The good, the bad and the ugly.
Proceedings of the Third Conference on Theoretical Issues in Natural Language Processing, Las
Cruces, New Mexico, January, 1987.U



REFERENCES 34

[16] Greiner, R., Learning by understanding analogies, PhD Thesis (STAN-CS-1071), Department
of Computer Science, Stanford University, September, 1985.

[17] Hayes-Roth, F., J. McDermott, An interference matching technique for inducing abstractions,
Communications of the ACM, 21(5), May, 1978.

[18] Holyoak, K., & Thagard, P. Analogical mapping by constraint satisfaction, June, 1988, (sub-
mitted for publication).

[19] Indurkhya, B., Constrained semantic transference: A formal theory of metaphors, Technical
Report 85/008, Boston University, Department of Computer Science, October, 1985.

[20] Kedar-Cabelli, S., Purpose-directed analogy. Proceedings of the Seventh Annual Conference of
the Cognitive Science Society, Irvine, CA, 1985.

[211 Reed, S.K., A structure-mapping model for word problems. Paper presented at the meeting of
the Psychonomic Society, Boston, 1985.

[22] Rumelhart, D.E., & Norman, D.A., Analogical processes in learning. In J.R. Anderson (Ed.),
Cognitive skills and their acquisition, Hillsdale, N.J., Erlbaum, 1981.

[23] Skorstad, J., B. Falkenhainer and D. Gentner Analogical Processing: A simulation and em-
pirical corroboration, Proceedings of the Sixth National Conference on Artificial Intelligence,
Seattle, WA, August, 1987.

[24] Winston, P.H., Learning and Reasoning by Analogy, Communications of the ACM, 23(12),
1980.

[25] Winston, P.H., Learning new principles from precedents and exercises, Artificial Intelligence,
19, 321-350, 1982.



I
U
I Index

algorithm, 4-9, 9 dump-scroll function, 24
summary, 3 dump-scroll-menu function, 24

analogical hint, 16
arg-list macro, 27 entity, 10

assertl function, 13 declaring, 10

attribute? macro, 27 entity? function, 26
inspection functions, 27

*base* variable, 28 entity-domain macro, 27

batch mode, 22 entity-name? macro, 27
best-gmaps function, 28 entity-type? function, 26

I eval-form macro, 27
calculate-nogoods function, 29 execution, 20

candidate inference, 8 expression, 11

alternate algorithms, 30 adding new expressions, 11

gather-inferences, 29 
expressions, 11

change-parms function, 25 expression function, 11

children-of? function, 14 expression-functor function, 27

clear-given-mappings function, 17 expression-type macro, 27
clear-scroll function, 24

commutative? macro, 27 fetch-dgroup function, 28
compare-gmaps function, 28 fetch-entity-definition macro, 27
constant-entity? macro, 27 fetch-expression function, 27
conventions, 1 fetch-predicate-definition macro, 27

file names, 19 file organization, 1
function names, 1 fully-expand-expression function, 27

create-match-hypotheses function, 29 fully-expand-expression-form function, 27

declare-given-mappings function, 17

defDescription macro, 11 gather-inferences function, 29
defEntity macro, 10 generalize, 15
define-description function, 11 generalize function, 23
define-Entity function, 10 generate-gmaps function, 29
define-predicate function, 10 get-dgroup function, 25
defPostMatcher macro, 22 get-rules function, 25
defPredicate macro, 10 global mapping, 5, 7-9, 9
defSME-Parameter macro, 25 comparing apparently identical gmaps, 28
defSME-Utility macro, 25 creation, 28
describe-dgroup function, 28 defstruct, 30
description group, 11 *gmaps*, 28

graphical display, 28 scoring, 8, 14
retrieval, 28 selecting the best, 28
textual description, 28 textual display, 28

Dgroup, 11 *gmaps* variable, 28, 30
dgroup-directory macro, 22 gm-base subst, 30
dgroup-le macro, 22 gm-brns-node subst, 30
display-match function, 28 gm-elements subst, 30

* a35



INDEX 36

gm-emaps subst, 30 predicate, 10

gm-id subst, 30 declaring, 10

gm-inferences subst, 30 inspection functions, 27

gm-plist subst, 30 predicate? macro, 27

gin-target subst, 30 predicate-type macro, 27
*graphics-pane* variable, 24 rassertl macro, 13

initial-assertion macro, 13 relation? macro, 27

*initial-assertions* variable, 30 report generation, 22

installation, 19 report-comments macro, 22

install-MH function, 12 representation issues, 18

intern-gmaps function, 29 restore-rules function, 30
return-dgroup function, 28

language-file macro, 22 rule macro, 13
lisp machine interface, 24 rule system, 12-18, 18

predicate documentation, 10 analogical hints, 16
*isp.pane* variable, 24 dynamically swapping rule sets, 30

giving it access to gmaps, 29
match constructor rules, 12 match constructor rules, 12

match evidence rules, 13 match evidence rules, 13

match hypothesis, 4-5 5 pure isomorphisms, 16

defstruct, 29 relaxing identical predicates, 15
defsruct 29rule file syntax, 12

inspecting evidence justifications, 23 run-uils , 2

installing,run-rules, 
29

*matchnhypotheses*, 28 simulating SPROUTER, 15
sc-yoth13e14 , 14 simulating structure-mapping theory, 15

scorng, 5-14 14rule-directory macro, 22

match-evidence-inspector function, 23 rule-file macro, 22

*match-hypotheses* variable, 28-29, 29 rule-se macro, 22
menuclipla-dgoup uncion 28rule-sets macro, 22

menu-display-dgroup function, 28 run-batch-file function, 22

menu-display-pairs function, 28 run-matcher-on macro, 22

menu-utilities function, 25 running SME, 20

rh-base-item subst, 29 run-rules function, 29-30, 30
moh-bins-node subst, 29

MHC-rule, 12 sanctioned-pairing? function, 18

roh-form subst, 29 scroll windows, 24

mh-plist subst, 29 saving contents, 24

mh-target-item subst, 29 writing to, 24, 26

n-ary? macro, 27 *scroll-pane* variable, 24

no-y + mcro, 29 select-double-scroll function, 24

nod-aegef macro, 2 select-graphics function, 24
select-large-graphics function, 24

packages, 1 select-scroll function, 24

site specific, 19 select-split function, 24

paired-item? function, 18 select-windowing-configuration function, 24

*parameter-menu-options* variable, 25 send-report-to macro, 22

parameters, 25 site specific information, 19

site specific, 1, 19 packages, 19



INDEX 37U
pathnames, 19

*sie-default-rules* variable, 19
*sme-dgroup-pathname* variable, 19
*sme-d uaes* variable, 19

Isme-format macro, 26
*sine-frame* variable, 24
*sme-graphics-output* variable, 26
sme-init function, 20
*sme-language-Mle* variable, 19
*sie-output-stream* variable, 26
*sme-parameters* variable, 25
*sme-predicates* variable, 27
sine-print function, 26
sme-rules-file function, 12
*sme-rules-pathname* variable, 19
*sme-system-pathname* variable, 19

sme-terpri function, 26
*spare-scroll-pane* variable, 24
system utilities, 25
*system-utilities-menu* variable, 25

*target* variable, 28
*the-lisp-package* variable, 19

*the-user-package* variable, 19
tre-init function, 30
tre-rules-file function, 30
*tre-rules-saver* variable, 30
tre-save-rules function, 12, 30

I *windowing?* variable, 26

I
I
I
U
I
I
U



Distribution List [lilnols/Gentner] NR B67-661

Dr. Phillip L. Ackerman Dr. Meryl S. Baker Dr. Robert Breaux

University of Minnesota Navy Personnel R&D Center Code 7B

Department of Psychology San Diego, CA 92152-8800 Naval Training Systems Center

75 East River Road Orlando, FL 32813-7100

N218 Elliott Hall

Minneapolis, MN 55456 prof. dott. Bruno G. Bara

Units di riceres di Dr. Ann Brown
intelligensa artilciale Center for the Study of Reading

Dr. Beth Adelson Univereita di Milano University of Illinois

Department of Computer Science 20122 Milano - via F. Sforsa 23 51 Gerty Drive

Tufts University ITALY Champaign, IL 61280

Medford, MA 0216

Dr. William M. Bart Dr. John S. Brown

AFOSR, University of Minaesota XEROX Palo Alto Research

Life Sciences Directorate Dept. of Edue. Psycholog Center

Boiling Air Force Base 330 Burton HAl 3333 Coyote Road

Washington, DC 20332 178 Pillsbury Dr., S.E. Palo Alto, CA 94304

Minneapolis, MN 55456

Dr. Robert Ahlers, Dr. John T. Bruer

Code N711 Leo Beltracchi James S. McDonnell Foundation

Human Factors Laboratory United State Nuclear Suite 1610

Naval Training Systems Center Regulatory Commision 1034 South Brentwood Blvd.

Orlando, FL 32813 Washington DC 20555 St. Louis, MO 63117

Dr. John R. Aaderson Dr. Gautam Biswas Dr. Bruce Buchanan

Department of Psychology Department of Computer Science Computer Science Department

Carnegie-Mellon University Box 1688, Station B Stanford University

Schenley Park Vanderbilt University Stanford, CA 94305

Pittsburgh, PA 15213 Nashville, TN 37236

LT COL Hugh Burns

Dr. St"hen J. andriole, Chairman Dr. John Black AFHRL/IDI

Department of Information Systems Teachers CoUe, Box 8 Brooks AFB, TX 78235

and Systems Engineering Columbia University

George Mason University 525 West 120th Street

4400 University Drive New York, NY 10027 Dr. Joseph C. Campione

Fairfax, VA 22010 Center for the Study of Reading
University of Illinois

Dr. Sue Bogner 51 Gerty Drive

Technical Director, ARI Army Research Institute Champaign, IL 61820

5001 Eisenhower Avenue ATTN: PERI-VF

Alen-dria, VA 22333 5001 Eisenhower Avenue
Alcmadria, VA 22333-00 Dr. Joanne Capper, Director

Center for Research into Practice

Dr. Patricia Baggett 1718 Connecticut Ave., N.W.

School of Education Dr. JefBonar Washington, DC 20009

610 L Univerity, Rm 130D Learning R&D Center

University of Michigan University of Pittsburgh

Ann Arbor, MI 48109-1259 Pittsburgh, PA 15260 Dr. Jaime G. Carbonell
Computer Science Department
Carnegie-Mellon University

Dr. Eva L. Baker Dr. Gordon H. Bower Scheney Park

UCLA Center for the Study Department of Psychology Pittsburgh, PA 15213

of Evaluation Stanford University

145 Moore Hall Stanford, CA 94306
University of California Dr. Susan Carey

Los Angeles, CA 90024 Department of Cognitive
and Neural Science

MIT
Cambridge, MA 02139



U Distribution List tlllnols/Gentnerl NBR 667-661

Dr. Pat Carpenter Assistant Chief of Staf Defense Technical

Carnegie--Mellon University for Research, Development, Information Center

Department of Psychology Test, and Evaluation Cameron Station, Bldg 5

Pittsburgh, PA 15213 Naval Education and Alexandria, VA 22314
Training Command (N-5) Attn: TC

NAS Pensacola, FL 32508 (12 Copies)

CDR Robert Carte
Ofice of the Chief

of Naval Operations Dr. AlIa M. Collins Dr. Thomas ho. Duffy

OP-933D4 Bolt Beranek & Newman, Inc. Communications Deign

Washington, DC 20350-2000 10 Moulton Street Center, 160 BH
Cambridge, MA 02238 Carneie-Mellon University

Scheoley Park

Chair, Dept of Psychonoy Pittsburgh, PA 15213

College of Arts and Sciences Dr. Stauday Collye
Catholic Univ. ofAmmics Oice of Naval Technology

Washington, DC 20064 Code 222 Dr. Richard Duran
800 N. Quincy Street Graduate School of Education
Arlington, VA 22217-5000 University of California

Dr. Fred Chang Santa Barbara, CA 93106

Pacific Bell
2 600Camino Ramon Brian Dalman
Room 3 -450 Training Technology Branch Dr. John Ellis

San Ramon, CA 94613 3400 TCHTW/TTGXC Navy Personnel R&D Cente

Lowry AFB, CO S0230-000 Code 51
San Diego, CA 92252

Dr. Davida Charney
English Department Goey Delacote
Penn State University Directeur de Linformatique Dr. Susan Epstein

University Park, PA 16802 Scientifique et Technique 144 S. Mountain Avenue

CNRS Montclair, NJ 07042

15, Quai Anatole France

Dr. Michlme Chi 75700 Paris, FRANCE

Learning R & D Center ERIC Facility-Acquisitions

University of Pittsburgh 4350 East-West Hwy., Suite 1100

39 O'Hara Street Dr. Denise Deilaros Bethesda, MD 20814-4475

Pittsburgh, PA 15260 Psychology Department
Bon 1A. Yale Staton
Yale University Dr. Beatrice J. Farr

Profhesor Chu Tim-Chen New Haven, CT 06520-7447 Army Research Institute

Matheretics Department PERI-IC

National Taiwan University 5001 Eisenhower Avenue

Taipei, TAIWAN Dr. Thomas E. Delern Alenandria, VA 22333
Project Engineer, Al
General Dynamics

Dr. William Clancey PO Box 748/Mail Zone 2546 Dr. Marshall J. Farr, Consultant

Institute for Rarch Fort Worth, TX 76101 Cognitive & Instructional Sciences

o Leaning 2520 North Vernon Street

3333 Coyote MiRl Road Arlington, VA 22M

Palo Alto, CA 94104 Dr. Andrf di Sees
University of CaliJornia

School of Education Dr. Paul Feltovich

Dr. Charles Clifton Tolman H Southern Illinois University
Tobin Hall Berkeley, CA 94720 School of Medicine
Department of Psychology Medical Education Department

University of P.O. Box 3926

Massachusetts Dr. R. K. Dismukle Springfield, IL 82708

Amherst, MA 01003 Associate Director for Life Sciences
AFOSR
Boiling AFB5 Washington, DC 20332

I
U



Distribution List (Illnois/Gentnor) NR 867-1

Mr. Wallace Feunseig Chair. Department at Dr. Dik Gregory
Educational Technology Psychology Admiralty Research
Bolt Beranek & Newmian Georgetown University Establishment /AXB
10 Moulton St. Washington, DC 20057 Qusens Road
Cambridge, MA 02238 Tddiiiitoii

Middlesex, ENGLAND TW110LN

Dr. Robert Glase
Dr. Ger hard Fischer Learning Research
University of Colorado & Development Center Dr. Gerhard Grossing
Department of Computer Science University of Pittsburgh Atominstitut
Boulder, CO 80309 3939 O'Hara Street Schuttelstrass 115

Pittsburgh, PA 15250 Vienna
AUSTRiA A-1020

Dr. 3. D. Fletcher
lnstitute for Defense Analyses Dr. Arthur M. Glesibeig
1301 N. Benregad St. University of Wisconsin Prof. Edward Haertel
Alexadria, VA 22311 W. 3. Brogden Psychology Bldg. School of Education

1202 W. Johnson Street Stanford University
Madison, WI 53706 Stanford, CA 94306

Dr. Linda Flower
Carnegie-Mellon University
Department of English Dr. Sam Glucksberg Dr. Henry MI. Halt!
Pittsburgh, PA 15213 Department of Psychology Halff Resources, Inc.

Princeton University 4918 33rd Road, North
Princeton, NJ 08640 Arlington, VA 22207

Dr. Kenneth D. Forbus
University of Illinois
Department of Computer Science Dr. Susan R1. Goldman Dr. Ronald K. Hambleton

1304 West Springfield Avenue Dept. of Education University of Massachusetts
Urbana, EL 51801 University of California Laboratory of Psychometric

Santa Barbara, CA 93100 and Evaluative Research
Hills South, Room 152

Dr. Barbara A. Fox Amherst, MA 01003
University of Colorado Dr. Sherrie Gott
Department of Linguistics AFHRL/MOMJ
Boulder, CO 80309 Brooks AFB, TX 78235-5801 Dr. Bruce W. Hamill

Research Center
The Johns Hopkins University

Dr. John R. Frederikeen Dr. T. Govindaraj Applied Physics Laboratory

BEN Laboraeories Georgia Institute of Johns Hopkins Road

10 Moulton Streed Technology Laurel, MD 20707
Cambridge, MA 02238 School of Industrial

and System Engineering
Atlanta, GA 30332-0206 Stevan Hamnad

Dr. Nrman rederksenEditor, The Behaviora and

Educational. Testing Service Br ann SieetSat24
(05-11) Dr. Waynes Gray 20inasaeetn Suit 06 24
Princeton, NJ 08541 Army Research InstitutePrneoN084

5001 Eisenhowe Avenue
Alexandria. VA 2233

JulieA. GaadenDr. Raid Hastie
JlieorA. Goe echnlo Northwestern University

Applications Division Dr. James G. Greene Earenst o Psycholo
Admiralty Research Es.ablishment School of EducationEvstn 600
portadown, Portsmouth POG 4AA Stanford University
UNITED KINGDOM Room 311

Stanford, CA 94306 Dr. John R. Hayes
Carnegie-Mellon University

Dr. edr GenuerDepartment of Psychology

University of Illinois Psen ghy PA 21
Department of Psychology Pt~ugP 51
603!E Daniel St,
Champaign, IL 61820



3 Distribution List IUllnlos/Gentnerj NR $67-551

Dr. Barbara Hayqw-Roth Dr. Janet Jackson Dr. Milton S. Kats

Knowledge System Laboratory Rijksuniversitet Groningen European Science Coordination
Stanford University Biologisch Centrum, Vicugel D Office
701 Welch Road Kerlan 30, 9751 NN Haren U.S. Army Research Institute
Palo Alto, CA 94304 The NETHERLANDS Box 65

FP0 New York 09610-160

Dr, Frederick Hayes-Roth Dr. Robert Jassarone
Teknowledge Elec. and Computer Eng. Dept. Dr. Frank KeilIP.O. Box 10119 University of South Carolina Department of Psychology
1550 Embarcadero Rd. Columbia, SC 29208 228 Uris Hall
Palo Alto, CA 94303 Cornell University

Ithaca, NY 14850I Dr. Claude Janvier
Dr. James D. Hoilaa Universite du Quebec a Montreal
MhCC P.O. Box 81181, succ: A" Dr. Wendy Kellogg

3500 W. Balcones Ctr. Dr. Montreal, Quebec H1IC 3PS IBM T. J. Watson Research Ctr.
Austin, TX 78759 CANADA P.O. Box 704

Yorktown Heights, NY 10598

Dr. Meliss Holland Dr. Robin Jeffries
Army Research Institute for the Hewlett-Packard Laboratories, 3L Dr. Dennis Kibler

Behavioral and Social Sciences P.O. Box 10490 University of California

5001 Eumeeower Avenue Palo Alto, CA 94303-071 Department of Information
Aladuia, VA 22333 and Computer Science

Chair, Department of rie C 21

Dr. Keith Holyoak Psychology
Department of Psychology The Johns Hopkins University Dr. David KleasUUniversity of California Baltimore, MD 21218 Technical Communication Program
Los Angeles, CA 9024 TIDAL Bldg., 2360 Bonisteel Blvd.

University of Michigan

Dr. Douglas H. Jone Ann Arbor, MI 48109-2108
Ms. Julia S. Hough Thatcher Jone Associates
Lawrence Erlbaurn Associate P.O. Box 6640

110 W. Harvey Street 10 Trafalgar Court Dr. J. Peter Kincaid
Philadelphia, PA 19144 Lawrencevlle, NJ 08648 Army Research Institute

Orlando Field Unit

c/o PM TRADE-E
Dr. Ed Hutchius Dr. Marta jut Orlando, FL 32813

Intelligent System Group Carnegie-Mellon University
Institute for Department of Psychology

Cognitive Science (C-01S) Schenley Park Dr. Walter Kintach
UCSD Pittsburgh, PA 15213 Department of Psychology
La Jolla, CA 92093 University of Colorado

Dr. anil Kbooan.Boulder, CO 03094345

Dr. Barbara Huts". Department of Psychology
Virginia Tecb University of California Dr. David Klahr

Graduate Center Berkeley, CA 94720 Carnegie-Mellon UniversityI 29W0 Telestar CL. Department of Psychology
Falls Church, VA 2204 Schooley Park

Dr. Ruth Kana Pittsburgh, PA 15213
University of Minnesota

Dr. Alice M. Laen Department of Psychology
Department of Psychology Elliott Hall Dr. Janet L. Kolodner
University of Maryland 75 E. River Road Georgia Institute of Technology

Catousville, IMD 21228 Minneapolis, MN 55455 School of InformationI & Computer* Science

Atlanta, GA 30332



Distribution List Elllnols/Gentnerl NR 667-661

Dr. Kenneth Kotovsky Dr. Alan M. Lesgold Dr. William L. Maloy

Community College of Learning R&D Center Code 04

Allegheny County University of Pittsburgh NETPMSA

808 Ridge Avenue Pittsburgh, PA 15250 Pensacola, FL 32509-5000

Pittsburgh, PA 15212

Dr. Jim Levin Dr. Elaine Marsh

Dr. David H. Krantz Department of Naval Center for Applied Research

Department of Psychology Educational Psychology in Artificial Intelligence

Columbia University 210 Education Building Naval Research Laboratory

406 Schermerhorn Hall 1310 South Sixth Street Code 5510

New York, NY 10027 Champaign, IL 61820-8990 Washington, DC 20375-5000

Dr. Benjamin Kuipers Dr. John Levine Dr. Sandra P. Marshall

University of Tom at Austin Learning R&D Center Dept. of Psychelogy

Department of Computer Sciences University of Pittsburgh San Diego State University

Taylor Hall 2.124 Pittsburgh, PA 15280 San Diego, CA 92182

Austin, Texas 78712

Dr. Michael Levine Dr. Manton M. Matthews

Dr. David R. Lambert Educational Psychology Department of Computer Science

Naval Ocean Systems Center 210 Education Bldg. University of South Carolina

Code 772 University of Illinois Columbia, SC 29208

71 Catalina Boulevard Champaign, IL 61801
San Diego, CA 92152-500

Dr. Richard E. Mayer
Dr. Clayton Lewis Department of Psychology

Dr. Pat Langley University of Colorado University of California

University of California Department of Computer Science Santa Barbara, CA 93106

Department of Information Campus Box 430
and Computer Science Boulder, CO 80309

Irvine, CA 92717 Dr. Joseph C. McLachlan
Code 52

Matt Lewis Navy Personnel R&D Center

Dr. Mrcy Lansman Department of Psychology San Diego, CA 92152-6800

University of North Carolina Carnegie-Mellon University

The L. L. Thurstone Lab. Pittsburgh, PA 15213
Davie Hall CB s*3270 Dr. James McMichael
Chap l Hill, NC 27514 Technical Director

Library Navy Personnel R&D Center
Naval Training Systems Center San Diego, CA 92152-6800

Dr. Jill Larkin Orlando, FL 32813
Carnegie-Mellon University
Departmeat of Psychology Dr. Barbara Means

Pittsburgk, PA 15213 Library SRI International

Naval War College 333 Ravenswood Avenue
Newport, RI 02940 Menlo Park, CA 94025

Dr. Jean Lave
Institute for Research

on Lwning Science and Technology Division Dr. Douglas L. Medin

3333 Coyote Hill Road Library of Congress Department of Psychology

Palo Alto, CA 92304 Washington, DC 20540 University of Illinois
603 E. Daniel Street
Champaign, IL 61820

Dr. Robert W. Lawler Dr. Jane Malin
Matthews 118 Mail Code EFS
Purdue University NASA Johnson Space Center Dr. George A. Miller

Wat Lafayette, IN 4790" Houston, TX 77058 Dept. of Psychology

Green Hall
Princeton University
Princeton, NJ 08540



3 Distribution List (llnois/Gentner] NR 687-151

Dr. William Montague Director, Manpower and Personnel Office of Naval Research,

NPRDC Code 13 Laboratory, Code 1142CS

San Diego, CA 92152-6800 NPRDC (Code 06) 800 N. Quincy Street

San Diego, CA 92152-8800 Arlington, VA 22217-5000
(a Copies)

I Dr. Randy Mumaw
Training Research Division Director, Human Factors

HumRRO & Organisational Systems Lab, Office of Naval Research,

1100 S. Washington NPRDC (Code 07) Code 1142PS3l andri VA 22314 San Diego, CA 12152-6800 800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Allen Kanto Library, NPRDC

Behavioral Technology Code P201L Psychologist

Laboratories - USC San Diego, CA 92152-800 Office of Naval Resarch

1845 5. Elena. Ave., 4th Floor Branch Office, London

Redondo Beach, CA 90277 Box 39

i Technical Director FPO New York, NY 09510

Navy Personnel R&D Center

Chair, Department of San Diego, CA 92152-6800

Computer Science 
Special Assistant for Marine

U.S. Naval Academy 
Corps Matters,

Annapols MD 22402 Commanding Offiew, ONR Code OOMC

Naval Research Laboratory 800 N. Quincy St.

Code 2627 Arlington, VA 22217-5000

Dr. Allen Newell Wshington, DC 20390

Department of Psychology
Carnegie-Mellon University 

Dr. Judith Orsanu

Schenley Park Dr. Harold P. O'Neil, Jr. Basic Research Office

Pittsburgh, PA 15213 School of Education - WPH 801 Army Research Institute

I Department of Educational 5001 Eisenhower Avenue

Psychology & Technology Alexandria, VA 22333

Dr. Richard E. Niabett University of Southern California

University of Michigan Lot Ang, CA 90089-0031

iIntitute tor Social Reseach Dr. James Paulson

Room 521 
Department of Psychology

Ann Arbor, MI 48109 Dr. Sedlan OhIsson Portland State University

Learning R & D Center P.O. BOX 751

University of Pittsburgh Portland, OR 97207

Dr. A. F. Norcio Pittsburgh, PA 15260

Code 5530
Naval Research Laboratory 

Military Asistant tar Training and

Washington, DC 20375-5000 Office of Naval Research Personnel Technology,

Code 1133 0USD (R & E)

a0 North Quincy Steet Room 3D129, The Pentagon

Dr. Donald A. Norman Arlington, VA 2217-6000 Wshington, DC 20301-3080

C-015
Institute for Cognitive Science
University of California Ofce of Naval Retch, Dr. David N. Perkins

La Jolla. CA 92093 Code 1142 Project Zeo

800 N. Quiny St. Harvard Graduate School

Ariinton, VA 2n1t-5000 of Education

Dety Tecical Director Ai.7 Appian Way

NpRDC Code iA 
Cambridge, MA 02138

San Diego, CA 92152400 Office of Naval Research,
Code 1142BI

800 N. Quincy Street Dr. Nancy N. Perry

Direc tor, Training Laborastory, Arington, VA 22217-5000 Naval Education and Training
Program Support Activity

;P RDC (Code 05) Code-047
San Diego, CA 92152-6800 Building 2435

Pensacola, FL 32509-5000

I
I

U l l I



Distribution List Rlltnois/Gentnerl NR 667-661

Department of Computer Science, Dr. James A. Reggia Dr. Janet W. Schofield

Naval Postgraduate School University of Maryland 816 LRDC Building

Monterey, CA 93940 School of Medicine University of Pittsburgh
Department of Neurology 3939 O'Hara Street
22 South Greene Street Pittsburgh, PA 15260

Dr. Steven Pinker Baltimore, MD 21201

Department of Psychology
ElO-018 Dr. Judith W. Segal

MIT Dr. J. Wesley Regian OERI

Cambridge, MA 02139 AFHRL/IDI 556 New Jersey Ave., NW
Brooks AFB, TX 78235 Washington, DC '20208

Dr. Tjeerd Plomp
Twente University of Technology Dr. Fred Reif Dr. Colleen M. Seifert

Department of Education Physics Department Institute for Cognitive Science

P.O. Box 217 University of California Mail Code C-015

7500 AE ENSCHEDE Berkeley, CA 94720 University of California, San Diego

THE NETHERLANDS La Jolla, CA 92093

Dr. Lauren Resnick
Dr. Steven E. Poltrock Learning R & D Center Dr. Ben Shneiderman

MCC University of Pittsburgh Dept. of Computer Science

3500 West Balcones Center Dr. 3939 O'Hara Street University of Maryland

Austin, TX 78759-4509 Pittsburgh, PA 15213 College Park, MD 20742

Dr. Harry E. Pople Dr. Gilbert Ricard Dr. Lee S. Shulman

University of Pittsburgh Mail Stop K02-14 School of Education

Decision Systems Laboratory Grumman Aircraft Systems 507 Ceras

1360 Scaife Hall Bethpage, NY 11787 Stanford University

Pittsburgh, PA 15261 Stanford, CA 94305-3084

Dr. Linda G. Roberts
Dr. Mary C. Potter Science, Education, and Dr. Robert S. Siegler

Department of Brain and Transportation Program Carnegie-Mellon University

Cognitive Sciences Office of Technology Assessment Department of Psychology

BT (E-10-039) Congress of the United States Schenley Park

Cambridge, MA 02139 Washington, DC 20510 Pittsburgh, PA 15213

Dr. Joseph Psotka Dr. William B. Rouse Dr. Derek Sleeman

ATTN: PERI-IC Search Technology, Inc. Computing Science Department

Army Research Institute 4725 Peachtree Corners Circle Kings College

5001 Eisenhower Ave. Suite 200 Old Aberdeen AB9 2UB

Alexandria, VA 22333-6600 Norcros, GA 30092 Scotland
UNITED KINGDOM

Dr. Lynne Roder Dr. Roger Schank
Department of Psychology Yale University Dr. Richard E. Snow

Carnegie-Melloa University Computer Science Department School of Education

Schenley Park P.O. Box 2158 Stanford University

Pittsburgh, PA 15213 New Haven, CT 06520 Stanford, CA 94305

Dr. Steve Reder Dr. Alan H. Schoenfeld Dr. Elliot Soioway

Northwest Regional University of California Yale University

Educational Laboratory Department of Education Computer Science Department

400 Lindsay Bldg. Berkeley, CA 94720 P.O Box 2158

710 S.W. Second Ave. New Haven, CT 06520

Portland, OR 97204



3Distribution List [Ii1inols/Gentner] NR 667-661

3 Dr. Richard C. Sorensen Headquarters, U. S. Marine Corps Dr. Wallace Wulfeck, IM
Navy Personnel R&D Center Code MPI-20 Navy Personnel R&D Center

San Diego, CA 92152-6800 Washington, DC 20380 Code 51

3 Dr. Kathryn T. Spoehr 
Dr. Kurt Van Lohn 

San Diego, CA 92152-6800

Brown University Department of Psychology Dr. Masoud Yasdani

Department of Psychology Carnegie-Mellon University Dept. of Computer Science

Providence, RI 02112 Schenley Park University of Exeter
Pittburgh, PA 15213 Prince of Wales Road

Exeter EX44PT

Dr. Robert J. Sternberg ENGLAND

Department of Psychology Dr. Jery Vogt
Yale University Navy Personnel R&D Center
Box 1hA, Yale Station Code 51 Mr. Carl York

New Haven, CT 06520 San Diego, CA 9162-6800 System Development Foundation
I Maritime Plass, -1770I ~San Francisco, CA 94111

Dr. Tomas Sticht 
Dr. Beth Warren

Applied Behavioral and BBN Laboratories, Inc.
Co~gitive Sciences, Inc. 10 Moulton Street Dr. Joseph L. Young

P.O. Box 6640 Cambridge, MA 02238 National Science Foundation
San Diego, CA 92106 Room 320

1800 G Street, N.W.

Dr. Keith T. Wescourt Washington, DC 20550

Dr. John Tangney FMC Corporation
AFOSR/NL, Bldg. 410 Central Engineering Labs

Boiling AFD, DC 20332-6448 1205 Coleman Ave., Box 580
D. Santa Clara, CA 95052

Dr. Kikumi Tatuoka

CERL Dr. Douglas Wetzel
252 Engineering Research Code 51

Laboratory Navy Personnel R&D Center
103 S. Mathews Avenue San Diego, CA 92152-6800

Urbana, IL 61801

Dr. Barbara White
Dr. Perry W. Thorndyke BBN Laboratories
FMC Corporation 10 Moulton Stred
Central Engineering Labe Cambridge, MA 02233

1205 Coleman Avenue, Box 580
Saat& Clars, CA 95052

Dr. Robert A. Wisher
U.S. Army Institute for the

Dr. Martin A. Tolcott Behavioral and Social Sciences
3001 Veasey Tar., N.W. 5001 Eisenhower Avenue
Apt. 1617 Alexandria, VA 22333-0

i Washiatom, DC 20008

W o DDr. Martin F. Wiskoff

Dr. Douglas Towue Defens Manpower Data Center
Behavioral Technology Labs S5 Camino El Fster.
University of Southern California Suite 200
1845 S. Elena Ave. Monterey, CA 93943-3231
Redondo Besch, CA 90277

Mr. Jobs H. Wolfe

Chair, Department of Navy Personnel R&D Center
Computer Science San Diego, CA 92152-6800

Tows.o State University
Towson, MD 21204

I
I


